PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil properties and microbial activity changes along spruce forest succession in an abandoned grassland

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of the colonization of an abandoned grassland by forest trees and the associated microenvironmental changes on soil properties and the microbial activity of soil were studied along a 170 m transect established on a former pasture colonized by Norway spruce (Picea abies Karst.) in Central Slovakia. The transect with a 5x5 m grid of sampling points crosses all successional stages from a closed forest to an open grassland, representing 50 years of secondary succession. Changes of basal soil respiration, substrate-induced respiration and soil catalase activity in association with tree density, light and temperature regime were examined, and their relationships with chemical soil properties were documented. Generally, light conditions, tree influence and soil temperatures were highly significantly correlated with the distance from the lower transect edge, but the correlation coefficients were not very high (|r| ranged between 0.37 and 0.70), indicating that the microsite conditions within the transect are strongly heterogeneous. With the advance of colonization, the amount of soil organic matter was found to increase, probably in association with a higher amount and a lower quality of litter. Catalase activity exhibits a linear trend along the transect, which is explained by a lower direct insolation of soils (r = 0.28***) and decreasing temperatures (r = 0.36***) in the upper part. Basal respiration is the lowest in the middle of the transect, where colonizing spruces form a dense closed stand with soil covered by a thick layer of raw litter. Both in the lower part covered by species-rich grassland communities and in the upper part, where forest herb species begin to establish, basal respiration is higher, probably due to higher amounts of easily decomposable plant material. In addition to these transect-wide trends, stationary spatial patterns were observed for most soil variables. Generally, microbial activity rates as well as chemical soil properties exhibited spatial continuity up to the distance of approx. 40 to 60 m.
Rocznik
Strony
457--467
Opis fizyczny
Bibliogr. 41 poz.,Rys., tab., wykr.,
Twórcy
autor
  • Technical University in Zvolen, Faculty of Forestry, T.G.Masaryka 24, SK-960 53 Zvolen, Slovakia, egomory@vsld.tuzvo.sk
Bibliografia
  • Aikio S., Väre H., Strömmer R. 2000 – Soil microbial activity and biomass in the primary succession of a dry heath forest – Soil Biol. Biochem. 32: 1091–1100.
  • Alef K. 1991 – Methodenhandbuch Bodenmikrobiologie. Aktivitäten, Biomasse, Differenzierung – Ecomed, Landsberg, 284 pp.
  • Augusto L., Ranger J., Binkley D., Rothe A. 2002 – Impact of several common tree species of European temperate forests on soil fertility – Ann. For. Sci. 59: 233–253.
  • Augusto L., Dupouey J.-L., Ranger J. 2003 – Effects of tree species on understory vegetation and environmental conditions in temperate forests – Ann. For. Sci. 60: 823–831.
  • Franklin R.B., Mills A.L. 2003 – Multiscale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field – FEMS Microbiol. Ecol. 44: 335–346.
  • Frazer G.W., Canham C.D., Lertzman K.P. 1999 – Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from truecolour fisheye photographs. Users manual and program documentation – Simon Fraser University, Burnaby, and the Institute of Ecosystem Studies, Millbrook, 36 pp.
  • Glenn-Lewin D., van der Maarel E. 1992 – Patterns and processes of vegetation dynamics (In: Plant Succession: Theory and Predictions, Eds. D. Glenn-Lewin, R.K. Peet, T.T. Veblen) – Chapman & Hall, London, pp. 11–59.
  • Gömöry D., Fabrika M., Chudý F., Paule L. 2006 – Development of genetic structures in a Norway spruce population colonizing abandoned agricultural land: a look back and a look ahead – Pol. J. Ecol. 54: 127–136
  • Goovaerts P. 1998 – Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties – Biol. Fert. Soils, 27: 315–334
  • Graham R.C., Ervin J.O., Wood H.B. 1995 – Aggregate stability under oak and pine after four decades of soil development – Soil. Sci. Soc. Am. J. 59: 1740–1744.
  • Grime J.P. 1979 – Plant Strategies and Vegetation Processes – J. Wiley & Sons, Chichester, New York, Brisbane, Toronto. 222 pp.
  • Hrivnák R., Ujházy K. 2005 – Changes of the mountain grassland vegetation after abandonment and colonization by Norway spruce – Ekológia (Bratislava), 31: 231–253
  • Jackson R.B., Caldwell M.M. 1993 – Geostatistical patterns of soil heterogeneity around individual perennial plants – J. Ecol. 81: 683–692.
  • Khaziev F.Kh. 1976 – Enzimaticheskaya aktivnost’ pochv – Metodicheskoe Posob’e, Moskva. 262 pp.
  • Križová E. 1995 – Sekundárna sukcesia na opustených lúkach a pastviskách v Hrochotskej doline [Secondary succession on abandoned meadows and pastures in the Hrochoť valley] (In: Sekundárna sukcesia, Eds. E. Križová, K. Ujházy) – Lesoprojekt, Zvolen, pp. 95–103.
  • Kühlmann S., Heikkinen J., Särkkä A., Hjorth U. 2001 – Relating abundance of ground vegetation species and tree patterns using ecological field theory (In: Proceedings of the IUFRO 4.11 Conference: Forest Biometry, Modelling and Information Science, Ed. K. Rennolls) – University of Greenwich, Greenwich, 12 pp.
  • Kuuluvainen T., Pukkala T. 1989 – Effect of Scots pine seed trees on the density of ground vegetation and tree seedlings – Silva Fenn. 23: 159–167.
  • Ladd J.N. 1978 – Origin and range of enzymes in soil (In: Soil Enzymes, ed. R. G. Burns) – Academic Press, London–New York–San Francisco, pp. 51–93.
  • McLean M.A., Huhta V. 2002 – Microfungal community structure in anthropogenic birch stands in central Finland – Biol. Fert. Soils, 35: 1–12.
  • Menyailo O.V., Hungate B.A., Zech W. 2002 – The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment – Plant Soil, 242: 183–196.
  • Muys B., Lust N., Granval P. 1992 – Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status – Soil Biol. Biochem. 24, 1459–1466.
  • Oline D.K., Grant M.C. 2002 – Scaling patterns of biomass and soil properties: an empirical analysis – Landscape Ecol., 17: 13–26.
  • Pannatier Y. 1996 – VARIOWIN: Software for Spatial Data Analysis in 2D – Springer-Verlag, New York.
  • Pennanen T., Liski J., Bååth E., Kitunen V., Uotila J., Westman C.J., Fritze H. 1999 – Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage – Microbial Ecol., 38: 168–179.
  • Phillips J.D., Marion D.A. 2004 – Pedological memory in forest soil development – For. Ecol. Manage. 188: 363–380.
  • Saetre P. 1999 – Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand – Ecography, 22: 183–192.
  • Šály R., Bedrna Z., Bublinec E., Čurlík J., Fulajtár E., Gregor J., Hanes J., Juráni B., Kukla J., Račko J., Sobocká J., Šurina B. 2000 – Morfogenetický klasifikačný systém pôd Slovenska [Morphogenetic classification system of soils in Slovakia] – VÚPOP, Bratislava, 76 pp.
  • SAS 1988 – SAS/STAT® User’s Guide, Release 6.03 Edition – SAS Institute, Cary, NC. 1028 pp.
  • Stephan A., Meyer A. H., Schmid B. 2000 – Plant diversity affects culturable soil bacteria in experimental grassland communities – J. Ecol. 88: 988–998.
  • Stoyan H., De-Polli H., Böhm S., Robertson G.P., Paul E.A. 2000 – Spatial heterogeneity of soil respiration and related properties at the plant scale – Plant Soil, 222: 203–214.
  • Tyurin I.V. 1951 – Contribution to the analytical methods for comparative studies of soil humus (in Russian) – Trudy Pochvennogo Instituta im. Dokuchaeva, 38: 5–21.
  • Ujházy K. 2003 – Sekundárna sukcesia na opustených lúkach a pasienkoch Poľany [Secondary succession on abandoned meadows and pastures of the Poľana Mts.] – Technická univerzita vo Zvolene, Zvolen, 104 pp.
  • van Andel J., Bakker J.P., Grootians A.P. 1993 – Mechanisms of vegetation succession: a review of concepts and perspectives – Acta Bot. Neerl. 42: 413–433.
  • van der Valk A.G. 1992 – Establishment, colonization and persistence (In: Plant Succession: Theory and Predictions, Eds. D. Glenn-Lewin, R.K. Peet, T.T. Veblen) – Chapman & Hall, London, pp. 60–102.
  • Vesterdal L., Raulund-Rasmussen K. 1998 – Forest floor chemistry under seven tree species along a soil fertility gradient – Can. J. For. Res. 28: 1636–1647.
  • Walker L.R., del Moral R. 2003 – Primary Succession and Ecosystem Rehabilitation – Cambridge University Press, Cambridge, 442 pp.
  • Welles J.M., Norman J.M. 1991 – Instrument for indirect measurement of canopy architecture – Agron. J., 83: 818–825.
  • Wilkinson S.C., Anderson J.M. 2001 – Spatial patterns of soil microbial communities in a Norway spruce (Picea abies) plantation – Microbial Ecol. 42: 248–255.
  • Yao H., He Z., Wilson M.J., Campbell C.D. 2000 – Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use – Microbial Ecol. 40: 223–237.
  • Zak D.R., Holmes W.E., White D.C., Peacock A.D., Tilman D. 2003 – Plant diversity, soil microbial communities, and ecosystem function: Are there any links? – Ecology, 84: 2042–2050.
  • Zhou J., Xia B., Treves D.S., Wu L.-Y., Marsh T.L., O’Neill R.V., Palumbo A.V., Tiedje J.M. 2002 – Spatial and Resource Factors Influencing High Microbial Diversity in Soil – Appl. Environ. Microb. 68: 326–334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1840-7055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.