PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on larval survival rate and duration of development of Lymantria monacha (L.) on needles of Pinus silvestris (L.) and of dispar (L.) on leaves of Quercus robur (L.)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assessed the effects of temperature on survival rate and duration of development (DD), i.e., time needed by larvae to reach the pupal stage, in nun moth (Lymantria monacha L.) and gypsy moth (L. dispar L.). The larvae were raised at 15, 20 or 25 [degrees] C, and fed with current-year-needles of Scots pine (Pinus sylvestris L.) and leaves of English oak (Quercus robur L.), respectively. With increasing temperature 15, 20 and 25 [degrees] C, larval survival rate (LSR) declined in L. monacha (for 35th day LSR was 0.44, 0.31 and 0.21, respectively), but increased in L. dispar (0.50, 1.00 and 0.94). In contrast, the duration of development decreased with increasing temperature in larvae of both moth species (67, 52 and 39 days for L. monacha, and 66, 43 and 33 days for L. dispar, respectively). The differences in larval survival rate between those species at higher temperatures can affect significantly their growth and development in warmer years. Therefore, it is possible that under global climate change these differences may lead to changes in distribution of both insect species.
Rocznik
Strony
595--600
Opis fizyczny
Bibliogr. 32 poz.,
Twórcy
Bibliografia
  • Andersen J.A., McCullought D.G., Potter B.E., Koller C.N., Bauer L.S., Lusch D.P., Ramm C.W. 2001 – Effects of winter temperatures on gypsy moth egg masses in the Great Lakes region of the United States – Agr. Forest Meteorol. 110: 85–100.
  • Andrew N.R., Hughes L. 2004 – Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change – Ecol. Entomol. 29: 527–542.
  • Åsman K. 2001 – Effect of temperature on development and activity periods of the leek moth Acrolepiopsis assectella Zell. (Lep., Acrolepiidae) – J. Appl. Entomol. 125: 361–364.
  • Ayres M.P., Lombardero M.J. 2000 – Assessing the consequences of global change for forest disturbance from herbivores and pathogens – Sci. Total Environ. 262: 263–286.
  • Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Hartley S., Jones T.H., Lindroth R.L., Press M.C., Symioudis I., Waltt A.D., Whittaker J.B. 2002 – Herbivory in global climate change research: direct effects of rising temperature on insect herbivores – Global Change Biol. 8: 1–16.
  • Bezemer T.M., Jones T.H., Knight K.J. 1998 – Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae – Oecologia, 116: 128–135.
  • Buse A., Good J.E.G., Dury S., Perrins C.M. 1998 – Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the winter moth (Operophtera brumata L.) – Funct. Ecol. 12: 742–749.
  • Coley P.D., Barone J.A. 1996 – Herbivory and plant defenses in tropical forests – Annu. Rev. Ecol. Syst. 27: 305–335.
  • Dury S.J., Good J.E.G., Perrins C.M., Buse A., Kaye T. 1998 – The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects – Global Change Biol. 4: 55–61.
  • Fleming R.A. 1996 – A mechanistic perspective of possible influences of climate change on defoliating insects in North America’s boreal forests – Silva Fenn. 30: 281–294.
  • Fleming R.A. 2000 – Climate change and insect disturbance regimes in Canada’s boreal forests – World Res. Rev. 12: 520–555.
  • Fritz R.S., Simms E.L. 1992 – Plant Resistance to Herbivores and Pathogens, Ecology, Evolution, and Genetics – The University of Chicago Press, Chicago, London, 600 pp.
  • Giertych M., Mátyás C. 1991 – Genetics of Scots pine. Series: Developments in Plant Genetics and Breeding, vol. 3 – Elsevier, Amsterdam, 280 pp.
  • Hallam A., Read J. 2006 – Do tropical species invest more in anti-herbivore defence then temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia – J. Trop. Ecol. 22: 41–51.
  • Harrington R., Fleming R.A., Woiwod I.P. 2001 – Climate change impacts on insect management and conservation in temperate regions: can they be predicted? –Agr. Forest Entomol. 3: 233–240.
  • Hódar J.A., Zamora R. 2004 – Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species – Biodivers. Conserv. 13: 493–500.
  • Kolk A., Starzyk J.R., Kinelski S., Dzwonkowski R. 1996 – Atlas szkodliwych owadów leśnych [Atlas of harmful forest insect] – Multico, Warszawa, 705 pp. (in Polish).
  • Lazarević J., Perić-Mataruga V., Stojković B., Tucić N. 2002 – Adaptation of the gypsy moth to an unsuitable host plant – Entomol. Exp. Appl. 102: 75–86.
  • Leather S.R., MacKenzie G.A. 1994 – Factors affecting the population development of the bird cherry ermine moth, Yponomeuta evonymella (L.) – The Entomologist, 113: 86–105.
  • Lempke B.J. 1980 – An outbreak of Lymantria dispar (Linnaeus) in eastern North-Brabant (Lep. Lymantriidae) – Entomol. Berichten, 40: 65–68.
  • Lindroth R.L., Klein K.A., Hemming J.D.C., Feuker A.M. 1997 – Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.) – Physiol. Entomol. 22: 55–64.
  • Mantel N. 1963 – Chi-square tests with one degree of freedom: extensions of the Mantel-Haenszel procedure – J. Am. Stat. Assoc. 58: 690–700.
  • Meusel H., Jäger E., Weinert E. 1965 – Vergleichende Chorologie der zentraleuropäischen Flora – VEB G. Fischer, Jena, 583 pp.
  • McCarty J.P. 2001 – Ecological consequences of recent climate change – Conserv. Biol. 15: 320–331.
  • Niesenbaum R.A., Kluger E.C. 2006 – When studying the effects of light on herbivory, should one consider temperature? – The case of Epimecis hortaria F. (Lepidoptera: Geometridae) feeding on Lindera benzoin L. (Lauraceae) –Environ. Entomol. 35: 606–606.
  • Stillwell R.C., Fox C.W. 2005 – Complex patterns of phenotypic plasticity: interactive effects of temperature during rearing and oviposition – Ecology, 86: 924–934.
  • Tenow O., Nilssen A.C., Holmgren B., Elverum F. 1999 – An insect (Argyresthia retinella, Lep., Yponomeutidae) outbreak in northern birch forests, released by climatic changes? – J. Appl. Ecol. 36: 111–122.
  • Walter H. 1973 – Vegetation of the earth in relation to climate and eco-physiological conditions – Springer-Verlag, New York, 237 pp.
  • Walther G.R. 2004 – Plants in a warmer world – Perspect. Plant Ecol. 6: 169–185.
  • Wilf P., Labandeira C.C. 1999 – Response of plant-insect associations to Paleocene-Eocene warming – Science, 284: 2153–2156.
  • Williams R.S., Lincoln D.E., Norby R.J. 2003 – Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature – Oecologia, 137: 114–122.
  • Woś A. 1999 – Klimat Polski [Climate of Poland] – PWN, Warszawa, 301 pp. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1839-6962
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.