PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of liposome membranes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wybrane właściwości błon liposomalnych
Języki publikacji
EN
Abstrakty
EN
Liposomes are closed structures obtained in the course of hydratation of phospholipides. Liposome vesicles are used for transportation of substances which may considerably improve human body or even save its life. In the article the information on liposomes, their structure and application as a carrier of drugs of various chemical character, are presented. The review of the physicochemical methods used in liposome characteristics is also submitted.
PL
Liposomy są zamkniętymi strukturami uzyskiwanymi podczas hydratacji fosfolipidów. Pęcherzyki liposomalne, o ile same nie mają właściwości leczniczych, mogą służyć do przenoszenia w nich substancji, które mogą znacząco poprawić kondycję organizmu lub ratować życie. W niniejszym artykule przedstawiono informacje dotyczące budowy liposomów i ich zastosowania jako nośników leków o różnym charakterze chemicznym. Dokonano również przeglądu metod fizyko-chemicznych stosowanych w charakterze liposomów.
Słowa kluczowe
Rocznik
Strony
33--38
Opis fizyczny
Bibliogr. 36 poz.,
Twórcy
autor
  • Zakład Chemii i Technologii Środowiska, Instytut Chemii, Wydział Matematyki, Fizyki i Chemii, Uniwersytet Śląski, ul. Szkolna 9, 40-006 Katowice
Bibliografia
  • [l] Felnerova D., Moser Ch., Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs, Current Opinion in Biotechnology, 15, 2004, 518-529.
  • [2] Lasic D.D., Novel applications of liposomes, Trends in Biotechnology, 16, 1998, 307-321.
  • [3] Gregoriadis G., Editorial, International Journal of Pharmaceutics, 162, 1998, 1-3.
  • [4] Prosser R.S., Vold R.R., Magnetically Aligned Phospholipid Bilayers with Positive Ordering: A New Model Membrane System, Biophysical Journal, 74, 1998, 2405-2418.
  • [5] Frézard F., Liposomes: from biophysics to the design of peptide vaccines, Brazilian Journal of Medical and Biological Research, 32, 1999, 181-189.
  • [6] Lasic D.D., Liposomes: from physics to applications, Elsevier, Amsterdam 1993.
  • [7] Gomez-Hens A., Fernandez-Romero J.M., The role of liposomes in analytical processes, Trends in Analytical Chemistry, 24, 2005, 9-19.
  • [8] Almeida R.F.M., Fedorov A., Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts, Biophysical Journal, 85,2003, 2406-2416.
  • [9] Gulati M., Grover M., Study of azathioprine encapsulation into liposomes, International Journal of Pharmaceutics, 165, 1998, 129-168.
  • [10] Mayhew E.G., Papahadjopoulos D., Role of cholesterol in enhancing the antitumor activity of cystosine arabinoside entrapped in liposomes, Cancer Treatment Reports, 63, 1979, 1923-1928.
  • [11] Fresta M., Puglisi G., CDP-Choline Entrapment and Release from Multilamellar and Reverse-Phase Evaporation Liposomes, Drug Development and Industrial Pharmacy, 19, 1993, 559-585.
  • [12] Vadiei K., Lopez-Berestein G., In vitro evaluation of liposomal cyclosporine, International Journal of Pharmaceutics, 57, 1989, 133-138.
  • [13] Sasaki H., Takakura Y., Antitumor activity of lipophilic prodrugs of mitomycin C entrapped in liposomes or o/w emulsion, Journal of Pharmacobio-Dynamics, 7, 1984, 120-130.
  • [14] Defrise-Quertain F., Chatelain P., Model studies for drug entrapment and liposome stability, Liposome Technology: Incorporation of Drugs, Proteins and Genetic Materials. CRC Press, Boca Raton 1984, 183-204.
  • [15] Tsujii K., Sunamoto J., Improved entrapment of drugs in modified liposomes, Life Sciences, 19, 1976, 1743-1750.
  • [16] Philippot J.R., Liautard J.P., A mild method for the preparation of very large unilamellar liposomes, Liposome Technology: Liposome Preparation and Related Techniques. CRC Press, Boca Raton 1993, 81-98.
  • [17] Schreier S., Paula E., Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects, Biochimica et Biophysica Acta, 1508, 2000,210-234.
  • [18] Attwood D., Florence A.T., Micellar properties of drugs: properties of micellar aggregates of phenothiazines and their aqueous solutions, Journal of Pharmaceutical Sciences, 63, 1974, 988-993.
  • [19] Attwood D., Blundell R., Association and Surface-Properties of Amphiphilic Benzodiazepine and Benzothiazepine Drugs in Aqueous-Solution, Journal of Colloid and Interface Science, 161, 1993, 19-23.
  • [20] Attwood D., Tolley J.A., Self-association of analgesics in aqueous solution: association models for codeine, oxycodone, ethylmorphine and pethidine, Journal of Pharmacy and Pharmacology, 32, 1980, 761-765.
  • [21] Hwang P.M., Vogel H.J., Three dimensional structures of antimicrobial peptides, Biochemistry and Cell Biology, 76, 1998,235-246.
  • [22] Taboada P., Attwood D., Influence of Molecular-Structure on the Ideality of Mixing in Micelles Formed in Binary-Mixtures of Surface-Active Drugs, Journal of Colloid and Interface Science, 216, 1999,270-275.
  • [23] Atherton A.D., Barry B. W., Photon correlation spectroscopy of surface active cationic drugs, Journal of Pharmacy and Pharmacology, 37, 1985, 854-862.
  • [24] Causon D., Gettins J., Ultrasonic relaxations associated with aggregation in drugs, Journal of the Chemical Society Faraday Transactions II, 77, 1981, 143-151.
  • [25] Yokoyama S., Fujino Y., Micellization of an Aqueous-Solution of Piperidolate Hydrochloride in the Presence of Acetylcholine Chloride, Chemical & Pharmaceutical Bulletin, 42, 1994, 1351-1353.
  • [26] Ruso J.M., Attwood D., Light-Scattering and NMR-Studies of the Self-Association of the Amphiphilic Molecule Propranolol Hydrochloride in Aqueous-Electrolyte Solutions, The Journal of Physical Chemistry, 103, 1999, 7092-7096.
  • [27] Frezzatti W.A., Toselli W.R., Spin label study of local anesthetic-lipid membrane interactions. Phase separation of the uncharged from and bilayer micellization by the charged from of tetracaine, Biochimica et Biophysica Acta, 860, 1986, 531-538.
  • [28] Rades T., Muller-Goymann C.C., Investigations on the micellisation behaviour of fenoprofen sodium, International Journal of Pharmaceutics, 159, 1997, 215-222.
  • [29] King S.Y., Basista A.M., Self-association and solubility behaviors of a novel anticancer agent, brequinar sodium, Journal of Pharmaceutical Sciences, 78, 1989, 95-100.
  • [30] Katoch R., Trivedi G.K., 1-[2-Hydroxy-3-octadecan-l'-oate]propyl2",2",5",5"-tetramethyl Pyrolidine-N-oxyl-3"-carboxylate as a Potential Spin Probe for Membrane Structure Studies, Bioorganic and Medicinal Chemistry, 7, 1999,2753-2758.
  • [31] Svetek J., Lipid content in liposome preparations determined by electron paramagnetic resonance, Acta Pharmaceutica Jugoslavia, 39, 1989, 343-348.
  • [32] Saran A., Srivastava S., Conformation of hexadecylphosphocholine, an anti-cancer drug, by molecular dynamics and NMR methods, Journal of Molecular Structure, 382, 1996,23-31.
  • [33] Socaciu C., Bojarski P., Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently, Biophysical Chemistry, 99, 2002, 1-15.
  • [34] Huang Ch., Li S., Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids, Biochimica et Biophysica Acta, 1422,1999, 273-307.
  • [35] Torchilin V.P., Drug targeting, European Journal of Pharmaceutical Sciences, 11, 2000,81-91.
  • [36] Berger N., Sachse A., Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics, International Journal of Pharmaceutics, 223, 2001, 55-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1617-6301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.