PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiological properties of bacteria inhabiting polluted and unpolluted marine sandy beaches (Southern Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The occurrence of bacteria displaying particular physiological properties was studied in polluted (Sopot) and unpolluted (Czołpino) marine sandy beaches (southern Baltic Sea). All eight isolated physiological groups of bacteria were much more numerous in polluted than in unpolluted beach. In polluted beach, bacteria hydrolyzing uric acid (32.5 cells 10[^3] g[^-1] dry w. of sand) and ammonifying bacteria (32.3 cells 10[^3] g[^-1] dry w. of sand) were the most numerous, while nitrifying bacteria were the least numerous (0.014 cells 10[^3] g[^-1] dry w. of sand). In unpolluted beach, bacteria hydrolyzing uric acid (0.66 cells l0[^3] g[^-1] dry w. of sand) and reducing methylene blue (0.18 cells l0[^3] g[^-1] dry w. of sand) were the most numerous, while no bacteria producing hydrogen sulphide from organic compounds or bacteria decomposing urea were isolated. In both beaches, considerable differentiation in the distribution of physiological groups of bacteria was found in a horizontal profile i.e. from the water-line to the middle of beach ([similar to] 60 m). Data concerning horizontal distribution of the physiological groups of bacteria in the sand of the polluted beach show that the majority of those groups was most numerous in the dune. No clear regularity in the distribution of physiological groups of bacteria was found in the horizontal profile of the unpolluted beach. Results of the present study indicate differences in the distribution of the physiological groups of bacteria in the surface (0-5 cm) and subsurface (5-10 cm) sand layers. Generally, in both studied beaches all physiological groups of bacteria were much more numerous in the surface than in the subsurface sand layer. The exception were bacteria reducing sulphates which in the polluted beach were most numerous at the depth of 5-10 cm.
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 48 poz.,Rys., tab.,
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, św. Wojciecha 5, 81-347 Gdynia, Poland
  • Department of Experimental Biology, Pomeranian Pedagogical University, Arciszewskiego 22, 76-200 Słupsk, Poland
  • Department of Genetic and Marine Biotechnology, Institute of Oceanology, ul. św. Wojciecha 5, 81-347 Gdynia, Poland, mudryk@pap.edu.pl
Bibliografia
  • 1. Billen G., Fontigny A. 1987 – Dynamics of a phaeocystis-dominated spring bloom in Belgian coastal waters. II. Bacterioplankton dynamics – Mar. Ecol. Prog. Ser. 37: 249–257.
  • 2. Boucher G., Chamroux S. 1976 – Bacteria and meiofauna in an experimental sand ecosystems. Material and preliminary results - J. Exp. Mar. Biol. Ecol. 24: 237–249.
  • 3. Braun E.J., Campbell C.E. 1989 – Uric acid decomposition in the lower gastrointestinal tract – J. Exp. Zool. 3: 70–74.
  • 4. Brown A., McLachlan A. 1990 – Ecology of sandy shores (eds.) – Elsevier, Amsterdam, 328 pp.
  • 5. Bussman I., Reichardt W. 1991 – Sulfatereducing bacteria in temporarily oxic sediments with bivalves – Mar. Ecol. Prog. Ser. 78: 97–102.
  • 6. Caffery J.M., Miller L.G. 1995 – A comparison of two nitrification inhibitors used to measure nitrification rates in estuarine sediments - FEMS Microbiol. Ecol. 17: 213–220.
  • 7. Donderski W. 1971 – Incidence of physiological types among bacteria from water and mud of the lake Jeziorak – AUNC Toruń Limnol. Papers, 6: 15–37.
  • 8. Eppley R.W., Renger E.H., Venrick E.L., Mullin M.M. 1973 – A study of phytoplankton dynamics and nutrition cycling in the central grye of the North Pacific Ocean - Limnol. Oceanogr. 18: 534–551.
  • 9. Gast V., Gocke K. 1988 – Vertical distribution of number, biomass and size-class spectrum of bacteria in relation to oxic/anoxic conditions in the Central Baltic Sea – Mar. Ecol. Prog. Ser. 45: 179–176.
  • 10. Gunkel K., Kümmel R., Tümpling W. 1990 – Zum biochemischen Hamstofabbau in wässeriger Lösung-Über-sicht – Acta Hydrochim. Hydrobiol. 18: 3–20.
  • 11. Haque A.M., Szymelfenig M., Węsławski M. 1996 – The sandy littoral zoobentos of the Polish Baltic coast – Oceanologia, 38: 361–378.
  • 12. Heymans J.J., McLachlan A. 1996 – Carbon budget and network analysis of a high-energy beach/surf-zone ecosystems – Estuar. Coast. Shelf Sci. 43: 485–495.
  • 13. Iriberri J., Rodriquez M.T., Egea I., Barcina 1988 – Spatial and seasonal distribution of bacterial physiological groups in two reservoirs with different trophic levels – Acta Hydrochem. Hydrobiol. 16: 145–155.
  • 14. Jędrzejczak M.F. 1999 – The degradation of stranded carrion on a Baltic Sea sandy beach - Oceanological Studies, 3/4: 109–141.
  • 15. Jørgensen N.O., Tranvik L.J., Berg G.M. 1999 – Occurrence and bacterial cycling of dissolved nitrogen in the Gulf Riga, the Baltic Sea – Mar. Ecol. Prog. Ser. 191: 1–18.
  • 16. Keil R.G., Kirchman D.L. 1991 – Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton – Mar. Ecol. Prog. Ser. 73: 1–10.
  • 17. Koop K., Griffiths C.L. 1982 – The relative significance of bacteria, meio- and macrofauna on an exposed sandy beaches – Mar. Biol. 66: 295–300.
  • 18. Koop K., Newell R.C., Lucas M.I. 1982 - Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore – Mar. Ecol. Prog. Ser. 9: 91–96.
  • 19. Kölbel-Boelke J., Tienken B., Nehrkorn 1988 – Microbial communities in the saturated groundwater environment (In: Methods of isolation and characterisation of heterotrophic bacteria) – Microbiol. Ecol. 16: 17–29.
  • 20. Krstulović N., Solić M. 1988 – Distribution of proteolytic, amylolytic and lipolytic bacteria in the Kastela Bay – Acta Adriat. 29: 75–83.
  • 21. McLachlan A. 1983 – Sandy beach ecology – a review (In: Sandy beaches ecosystems, Eds. A. McLachlan, T. Erasmus) – Publishers Junk W, The Hague–Boston–Lancaster, 321–379.
  • 22. McLachlan A., Romer G. 1990 – Trophic relationships in a high energy beach and surf zone ecosystems (In: Proc 24 Europ – Mar. Biol. Symp. Eds. M. Barnes, R.N. Gibson) - Aberdeen Univ. Press, pp. 356–372.
  • 23. McLachlan A., Tuner I. 1994 – The interstitial environment of sandy beaches – Mar. Ecol. 15: 177–211
  • 24. McLachlan A., Jaramillo E. 1995 – Zonation on sandy beaches – Oceanogr. Mar. Biol. Ann. Rev. 3: 305–335.
  • 25. Mead G.C. 1989 – Microbes of the avian cecum: types present and substrates utilised – J. Exp. Zool. 3: 48–54.
  • 26. Meyer-Reil L.A., Bölter M., Dawson R., Liebezeit G., Szwerinski H., Wolter K. 1980 – Interrelationship between microbiological and chemical parameters of sandy beach sediment, a summer aspect – Appl. Environ. Microbiol. 39: 797–802.
  • 27. Mudryk Z. 1987 – Some physiological properties of water bacteria isolated from estuarine lake Gardno – Oceanol. Stud. Rev. 51:269–282.
  • 28. Mudryk Z., Korzeniewski K., Falkowska L. 1991 – Bacteriological investigation of the surface microlayer of the Gulf of Gdańsk – Oceanologia, 30: 93–103.
  • 29. Mudryk Z., Podgórska B., Ameryk A. 2001 – Bacteriological characterization of a Baltic sandy beach in summer – Ecohydrol. Hydrobiol. 1: 503–509.
  • 30. Nair S., Bharathi L. 1980 – Heterotrophic bacterial population in tropical sandy beaches - Mahas. Bull. Nat. Inst. Oceanogr. 13: 261–267.
  • 31. Novitsky J.A., MacSween M.C. 1989 – Microbiology of a high energy beach sediment: evidence for an active and growing community - Mar. Ecol. Prog. Ser. 52: 71–75.
  • 32. Olańczuk-Neyman K., Jankowska K. 1998 – Bacteriological investigations of the sandy beach ecosystem in Sopot – Oceanologia, 40: 137–151.
  • 33. Petrycka H., Mrozowska J., Kasza H. 1990 – Changes in bacterial microflora against the background of increasing, eutrophication of Goczałkowice reservior, southern Poland a Acta Hydrobiol. 32: 55–66.
  • 34. Podgórska B. 2002 – Udział bakterii w procesach transformacji materii organicznej w ekotonie plaż piaszczystych Bałtyku. [Participation of bacteria in the transformation processes of organic matter in ecotone sandy beaches (southern Baltic Sea)] – Ph.D. Thesis, Institute of Oceanology, Polish Academy of Sciences, Sopot, 163 pp. (in Polish).
  • 35. Podgórska B., Mudryk Z. 2003 – Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea beach – Estuar. Coast. Shelf Sci. 56: 539–546.
  • 36. Postage J.R. 1966 – Media for sulphur bacteria - Lab. Pract. 15: 1239–1244.
  • 37. Rodina A. 1972 – Methods in aquatic microbiology, Eds. R.R Colwell., M.S. Zambruski - Baltimore–London–Tokyo, University Park Press 468 pp.
  • 38. Salas J.A., Ellar D.J. 1985 – Uric acid and allantoin uptake by Bacillus fastidiosus spores - FEBS Lett. 183: 256–259.
  • 39. Schmidt S., Dennison W.C., Moss G.J., Stewart G.R. 2004 – Nitrogen ecophysilogy of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia – Func. Plant. Biol. 31: 517–538.
  • 40. Schoeman D.S., McLachlan A., Dugan J.E. 2000 – Lessons from a disturbance experiment in the intertidal zone of an exposed sand beach – Estuar. Coast. Shelf Sci. 50: 869–884.
  • 41. Seeley H., Nandemark P.J., Lee J.J. 1991 - Microbes in Action. A Laboratory Manual of Microbiology – Freeman and Company New York 450 pp.
  • 42. Seiler H., Braatz R., Ohmayer G. 1980 – Numerical cluster analysis of the Coryneform bacteria from activated sludge – Zbl. Bakt. Hyg. 25: 357–375.
  • 43. Singer M.A. 2003 – Do mammals, birds, reptiles and fish have similar nitrogen conserving systems? – Comp. Biochem. Physiol. 134: 543–558.
  • 44. Steinmann J. 1976 – Untersuchungen über den bakteriellen Abbau von Harnstoff und Harnsäure in der westlichen Ostsee – Bot. Mar. 19: 47–58.
  • 45. Uraban-Malinaga B., Opaliński K.W. 2001 – Interstitial community oxygen consumption in a Baltic sandy beach: horizontal zonation – Oceanologia, 3: 455–468.
  • 46. Ward B.B., Talbot M.C., Perry M.J. 1984 - Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrate dynamics in coastal waters – Cont. Shelf. Res. 3: 383–398.
  • 47. Węsławski M., Urban-Malinga B., Kotwicki L.., Opaliński K.W., Szymelfenig M., Dutkowski M. 2000 – Sandy coastlines are there conflicts between recreation and natural values? – Oceanol. Stud. 2: 5–18.
  • 48. Zdanowski M.K., Zmuda M.J., Zwolska I. 2005 – Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic – Soil Biol. Biochem. 37: 581–595.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1617-6277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.