PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Why life histories are diverse

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Why do some animals weigh a fraction of a milligram and others many tons? Why do some animals mature after a few days and others need several years? Why do some animals grow and then reproduce without growing, while others continue growing after maturation? Why are growth curves so often well-approximated by von Bertalanffy's equation? Why do some animals produce myriads of tiny eggs and others produce only a few large offspring? Evolution of life histories is driven basically by the size-dependences of three parameters: the resource acquisition rate, metabolic rate and mortality risk. The combinations of size-dependences of this trio produce a plethora of locally optimal life histories, and even more sub-optimal strategies which must coexist with optimal ones in the real world. Additionally, selection forces differ depending on whether a population stays most of the time at equilibrium or in an expansion phase. Life history evolution cannot be understood without mathematical modelling, and optimization of life-time resource allocation is a powerful approach to that, though not the only one. Modelling outcomes from studies based on resource allocation optimization are presented here mainly as graphs.
Twórcy
  • Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
  • Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland, kozlo@eko.uj.edu.pl
Bibliografia
  • Arnqvist G., Johansson F. 1998 – Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae - Ecology, 79: 1847–1858.
  • Bellman R. 1957 – Dynamic programming - Princeton University Press, Princeton, New Jersey.
  • Benton T.G., Grant A. 2000 – Evolutionary fitness in ecology: Comparing measures of fitness in stochastic, density-dependent environments - Evol. Ecol. Res. 2: 769–789.
  • Bertalanffy L.V. 1957 – Quantitative laws in metabolism and growth – Quart. Rev. Biol. 32: 217–231.
  • Beverton R.J.H. 1992 – Patterns of reproductive strategy parameters in some marine teleost fishes – J. Fish Biol. 41 (Suppl. B): 137–160.
  • Beverton R.J.H., Holt S.J. 1959 – A review of the lifespan and mortality rates of fish in nature, and their relation to growth and other physiological characteristics – Ciba Found. Coll. Ageing, 54: 142–180.
  • Boersma M., Spaak P., Demeester L. 1998 – Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses – Am. Nat. 152: 237–248.
  • Braley R.D. 1989 – A gigant clam stock survey and preliminary investigation of pearl oyster resources in the Tokelau Islands – South Pacific Aquaculture Development Project, Food and Agriculture Organization of the United Nations, Suva, Fiji – http://www.fao.org/docrep/field/003/AC293E/AC293E00.htm#TOC.
  • Brown J.H., Marquet P.A., Taper M.L. 1993 – Evolution of body size – Consequences of an energetic definition of fitness – Am. Nat. 142: 573–584.
  • Charnov E.L. 1993 – Life history invariants. Some exploitations of symmetry in evolutionary ecology – Oxford University Press.
  • Cichoń M. 1997 – Evolution of longevity through optimal resource allocation – Proc. Roy. Soc. London, B 264: 1383–1388.
  • Cichoń M., Kozłowski J. 2000 – Aging and typical survivorship curves result from optimal resource allocation – Evol. Ecol. Res. 2: 857–870.
  • Conover D.O., Munch S.B. 2002 – Sustaining fisheries yields over evolutionary time scales – Science, 297: 94–96.
  • Czarnołęski M., Kozłowski J., Lewandowski K., Mikołajczyk M., Müller T., Stańczykowska A. 2005 – Optimal resource allocation explains changes in the zebra mussel growth pattern through time - – Evol. Ecol. Res. 7: 821–835.
  • Czarnołęski M., Kozłowski J. 1998 – Do Bertalanffy’s growth curves result from optimal resource allocation? – Ecol. Letters, 1: 5–7.
  • Czarnołęski M., Kozłowski J., Stańczykowska A., Lewandowski K. 2003 – Optimal resource allocation explains growth curve diversity in zebra mussels – Evol. Ecol. Res. 5: 571–587.
  • Dawidowicz P., Pijanowska J., Ciechomski K. 1990 – Vertical migration of Chaoborus larvae is induced by the presence of fish - Limnol. Oceanogr. 35: 1631–1635.
  • Duarte C.M., Alcaraz M. 1989 – To produce many small or few large eggs: a size-independent reproductive tactic of fish – Oecologia, 80: 401–404.
  • Else P.L., Hulbert A.J. 1987 – Evolution of mammalian endothermic metabolism: “leaky” membranes as a source of heat – Am. J. Physiol. 22: 1–7.
  • Froese R., Pauly D. (Eds) 2005 – FishBase World Wide Web electronic publication - www.fishbase.org, version (10/2005).
  • Gliwicz Z.M. 1986a – A lunar cycle in zooplankton - Ecology, 67: 882–897.
  • Gliwicz Z.M. 1986b – Predation and the evolution of vertical migration behaviour in zooplankton - Nature, 320: 746–748.
  • Goniakowska L. 1973 – Metabolism, resistance to hypotonic solutions, and ultrastructure of erythrocytes of five amphibian species - Acta Biol. Cracoviensia, Ser. Zool. 16: 114–134.
  • Goniakowska-Witalinska L. 1976 – Effect of ouabain on oxygen consumption and on osmotic swelling of amphibian erythrocytes – Bull. Acad. Pol. Sci., Ser. Sci. Biol. 24: 221–226.
  • Gregory T.R. 2001 – Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma – Biol. Rev. 76: 65–101.
  • Gunderson D.R. 1997 – Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes – Can. J. Fish. Aquat. Sci. 54: 990–998.
  • Hart M.W. 1996 – Evolutionary loss of larval feeding: Development, form and function in a facultatively feeding larva, Brisaster latifrons - Evolution, 50: 174–187.
  • Harvey P.H., Zammuto R.M. 1985 – Patterns of mortality and age at first reproduction in natural populations of mammals – Nature, 315: 319–320.
  • Jachner A. 1995 – Changes in feeding behavior of bleak (Alburnus alburnus (L.)) in response to visual and chemical stimuli from predators - Arch. Hydrobiol. 133: 305–314.
  • Jockusch E.L. 1997 – An evolutionary correlate of genome size change in plethodontid salamanders – Proc. Roy. Soc. London B - Biol. Sci. 264: 597–604.
  • Konarzewski M. 1988 – A model of growth in altrical birds based on changes in water content of the tissues – Ornis Scandinavica, 19: 290–296.
  • Kozłowski J. 1991 – Optimal energy allocation models - an alternative to the concepts of reproductive effort and cost of reproduction - Acta Oecol. 12: 11–33.
  • Kozłowski J. 1992 – Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity – Trends Ecol. Evol. 7: 15–19.
  • Kozłowski J. 1993 – Measuring fitness in lifehistory studies – Trends Ecol. Evol. 8: 84–85.
  • Kozłowski J. 1996a – Optimal initial size and adult size of animals: consequences for macroevolution and community structure – Am. Nat. 147: 101–114.
  • Kozłowski J. 1996b – Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth – Proc. Roy. Soc. London B, 263: 559–566.
  • Kozłowski J. 1999 – Adaptation: a life history perspective – Oikos, 86: 185–194.
  • Kozłowski J. 2000 – Does body size optimization alter the allometries for production and life history traits? (In: Scaling in biology, Eds: J. Brown, G. West) – Oxford University Press, pp. 237–252.
  • Kozłowski J., Czarnołęski M., Dańko M. 2004 – Can optimal resource allocation models explain why ectotherms grow larger in cold? – Integr. Comp. Biol. 44: 480–493.
  • Kozłowski J., Konarzewski M., Gawelczyk A.T. 2003a – Cell size as a link between noncoding DNA and metabolic rate scaling - – Proc. Natl. Acad. Sci. USA, 100: 14080–14085.
  • Kozłowski J., Konarzewski M., Gawelczyk A.T. 2003b – Intraspecific body size optimization produces interspecific allometries (In: Macroecology: concepts and consequences, Eds: T.M. Blackburn, K.J. Gaston) - Blackwell Publishing, pp. 299–320.
  • Kozłowski J., Teriokhin A.T. 1999 – Energy allocation between growth and reproduction: The Pontryagin maximum principle solution for the case of age- and season-dependent mortality – Evol. Ecol. Res. 1: 423–441.
  • Kozłowski J., Uchmański J. 1987 – Optimal individual growth and reproduction in perennial species with indeterminate growth - Evol. Ecol. 1: 214–230.
  • Kozłowski J., Wieger t R.G. 1986 – Optimal allocation of energy to growth and reproduction - Theor. Popul. Biol. 29: 16–37.
  • Kozłowski J., Wieger t R.G. 1987 – Optimal age and size at maturity in annuals and perennials with determinate growth – Evol. Ecol. 1: 231–244.
  • Kozłowski J., Ziółko M. 1988 – Gradual transition from vegetative to reproductive growth is optimal when the maximum rate of reproductive growth is limited – Theor. Popul. Biol. 34: 118–129.
  • Lessios H.A. 1990 – Adaptation and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama - Am. Nat. 135: 1–13.
  • MacArthur R.H., Wilson E.O. 1967 – Theory of island biogeography – Princeton University Press, Princeton.
  • Mangel M., Clark C.W. 1989 – Dynamic modeling in behavioral ecology – Princeton University Press, Princeton.
  • Mylius S.D., Diekmann O. 1995 – On evolutionarily stable life histories, optimization and the need to be specific about density dependence - – Oikos, 74: 218–224.
  • Pasztor L., Meszena G., Kisdi E. 1996 - R(0) or r: A matter of taste? – J. Evol. Biol. 9: 511–516.
  • Perrin N., Sibly R.M. 1993 – Dynamic models of energy allocation and investment - Annu. Rev. Ecol. Syst. 24: 379–410.
  • Perrin N., Sibly R.M., Nichols N.K. 1993 - Optimal growth strategies when mortality and production rates are size-dependent - Evol. Ecol. 7: 576–592.
  • Persson L., De Roos A.M. 2006 – Sizestructured interactions and the dynamics of aquatic systems (In: Advances in European Freshwater Sciences, 2005, Eds: Z.M. Gliwicz, G. Mazurkiewicz-Boron, K.J. Rouen) – Pol. J. Ecol. 54: 621–632.
  • Pianka E.R. 1970 – On r and K selection – Am. Nat. 104: 592–597.
  • Pijanowska J. 1991 – Seasonal changes in morphology of Daphnia cucullata Sars. – Arch. Hydrobiol. 121: 79–86.
  • Pijanowska J. 1993 – Diel vertical migrations in zooplankton: fixed or inducible behaviour? - Arch. Hydrobiol. Beith. Ergebn. Limnol. 39: 89–97.
  • Pontryagin L.S., Boltyankii V.G., Gamkrelidze R.V., Mishchenko E.F. 1962 - Mathematical theory of optimal processes - Wiley, New York.
  • Porter R.K., Brand M.D. 1993 – Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate – Nature, 362: 628–630.
  • Promislow D., Clobert J., Barbault R. 1992 – Life history allometry in mammals and squamate reptiles – taxon-level effects - Oikos, 65: 285–294.
  • Promislow D.E.L., Harvey P.H. 1990 – Living fast and dying young: A comparative analysis of life history variation among mammals - J. Zool. 220: 417–437.
  • Reiss M.J. 1989 – The allometry of growth and reproduction – Cambridge University Press, Cambridge.
  • Reznick D.N., Butler M.J., Rodd F.H., Ross P. 1996 – Life-history evolution in guppies (Poecilia reticulata). 6. Differential mortality as a mechanism for natural selection - Evolution, 50:1651–1660.
  • Ricklefs R.E. 1979 – Adaptation, constraint, and compromise in avian postnatal development - Biol. Rev. 54: 269–290.
  • Ricklefs R.E. 2003 – Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model – Func. Ecol. 17: 384–393.
  • Riessen H.P. 1999 – Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis – Can. J. Fish. Aquat. Sci. 56: 2487–2494.
  • Rodhouse P.G., Hatfield E.M.C. 1990 - Dynamics of growth and maturation in the cephalopod Illex argentinus de Castellanos, 1960 (Teuthoidea, Ommastrephidae) – Philosoph. Transact. Roy. Soc. London B – Biol. Sci. 329: 229–241.
  • Rodhouse P.G., Swinfen R.C., Murray A.W.A. 1988 – Life cycle, demography and reproductive investment in the myopsid squid Allotenthis subulata – Mar. Ecol. – Progress Ser. 45: 245–253.
  • Roth G., Blanke J., Wake D.B. 1994 – Cell size predicts morphological complexity in the brains of frogs and salamanders – Proc. Nat. Acad. Sci. USA, 91: 4796–4800.
  • Roth G., Nishikawa K.C., Wake D.B. 1997 - Genome size, secondary simplification, and the evolution of the brain in salamanders - Brain Behav. Evol. 50: 50–59.
  • Sakwinska O. 2002 – Response to fish kairomone in Daphnia galeata life history traits relies on shift to earlier instar at maturation - Oecologia, 131: 409–417.
  • Sebens K.P. 1982 – The limits to indeterminate growth: an optimal size model applied to passive suspension feeders – Ecology, 63: 209–222.
  • Sebens K.P. 1987 – The ecology of indeterminate growth in animals – Annu. Rev. Ecol. Syst. 18: 371–407.
  • Sewell M.A., Young C.M. 1997 – Are echinoderm egg size distributions bimodal? – Biol. Bull. 193: 297–305.
  • Shine R., Charnov E.L. 1992 – Patterns of survival, growth, and maturation in snakes and lizards – Am. Nat. 139: 1257–1269.
  • Shine R., Iverson J.B. 1995 – Patterns of survival, growth and maturation in turtles - Oikos, 72: 343–348.
  • Slusarczyk M. 2001 – Food threshold for diapause in Daphnia under the threat of fish predation - Ecology, 82: 1089–1096.
  • Smith C.C., Fretwell S.D. 1974 – The optimal balance between size and number of offspring - Am. Nat. 108: 499–506.
  • Stamps J.A., Mangel M., Phillips J.A. 1998 – A new look at relationships between size at maturity and asymptotic size – Am. Nat. 152: 470–479.
  • Stearns S.C. 1992 – The evolution of life histories - Oxford University Press, Oxford.
  • Sutherland W.J., Grafen A., Harvey P.H. 1986 – Life-history correlations and demography - Nature, 320: p. 88.
  • Szarski H. 1983 – Cell size and the concept of wasteful and frugal evolutionary strategies – J. Theor. Biol. 105: 201–209.
  • Taylor B.E., Gabriel W. 1992 – To grow or not to grow – optimal resource allocation for Daphnia – Amer. Nat. 139: 248–266.
  • Taylor P.D., Williams G.C. 1984 – Demographic parameters at evolutionary equilibrium - Can. J. Zool. 62: 2264–2271.
  • Tollrian R ., Harvell C.D. (Eds) 1998 – The ecology and evolution of inducible defense - Princeton University Press, Princeton, New Jersey.
  • Vincent T.L., Pulliam H.R. 1980 – Evolution of life history strategies for an asexual annual plant model – Theor. Popul. Biol. 17: 215–231.
  • Vinogradov A.E. 1995 – Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rate of mammals is related to genome size – Evolution, 49: 1249–1259.
  • Vinogradov A.E. 1997 – Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size – Evolution, 51: 220–225.
  • Weeks S.C. 1996 – The hidden cost of reproduction: reduced food intake caused by spatial constrains in the body cavity – Oikos, 75: 345–349.
  • Weiner J. 1992 – Physiological limits to sustainable energy budgets in birds and mammals: ecological implications – Trends Ecol. Evol. 7: 384–388.
  • Werner E.E., Anholt B.R. 1993 – Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity - – Am. Nat. 142: 242–272.
  • Ziółko M., Kozłowski J. 1983 – Evolution of body size: an optimization model – Mathemat. Biosci. 64: 127–143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1546-6160
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.