PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of stable isotope analyses in freshwater ecology: Current awareness

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ecological research using stable isotopes has progressed rapidly during the last 20 years and although more studies are including the addition of isotopically labelled compounds at tracer levels, the overwhelming majority rely on measurements of natural abundance ratios. Access to isotope ratio mass spectrometry has increased, spurred on by awareness of the techniques and increasing demand, and consequently cost of sample analysis has dropped. Today stable isotopes of carbon ([13]C/[12]C), nitrogen ([15]N/[14]N), sulphur ([34]S/[32]S), oxygen ([18]O/[16]O), and hydrogen ([2]H/[1]H) can be determined routinely. Perhaps one of the most appealing attributes of isotopic signatures is their potential use to find patterns and determine mechanisms across a range of scales from the molecular level through to characterizing whole food webs, reconstructing palaeoenvironments, tracing nutrient fluxes between ecosystems and identifying subsidies, or migrations of organisms. Ecologists from every discipline who are unlikely to have been trained as isotope chemists have added stable isotope analysis (SIA) to their "toolbox", but often increasing use leads to increasing abuse. The usefulness of SIA arises from predictable physical and enzymatic-based discrimination between biological and non-biological materials leading to different isotopic compositions. Without some ecological understanding of these, interpretation of isotope-derived data can often be flawed. Here, I explore how SIA recently has been used for research in aquatic ecology, reviewing how some of these techniques have allowed elucidation of key processes in aquatic systems such as the contribution of allochthony to lake food webs, and discuss the "state of the art". Included are some thoughts on where our knowledge in aquatic ecology remains deficient and how continued development and future application of SIA and interdisciplinary methodologies may be applied.
Słowa kluczowe
Twórcy
  • School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
  • School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, j.grey@qmul.ac.uk
Bibliografia
  • Abraham W.R., Hesse C., Pelze O. 1998 - Ratios of carbon isotopes in microbial lipids as an indicator of substrate use – Appl. Environ. Microbiol. 64: 4202–4209.
  • Adams C., Fraser D., McCarthy I., Shields S., Waldron S., Alexander G. 2003 – Stable isotope analysis reveals ecological segregation in a bimodal size polymorphism in Arctic charr from Loch Tay, Scotland - J. Fish Biol. 62: 474–481.
  • Adams T.S., Sterner R.W. 2000 – The effect of dietary nitrogen content on trophic level 15N enrichment – Limnol. Oceanogr. 45: 601–607.
  • Arrington D.A., Winemiller K. 2002 - Preservation effects on stable isotope analysis of fish muscle – Trans. Am. Fish. Soc. 131: 337–342.
  • Bearhop S., Adams C., Waldron S., Fuller R.A., Macleod H. 2004 – Determining trophic niche width: a novel approach using stable isotope analysis – J. Animal Ecol. 73: 1007–1012.
  • Beaudoin C.P., Tonn W.M., Prepas E.E., Wassenaar L.I. 1999 – Individual specialization and trophic adaptability of northern pike (Esox lucius): an isotope and dietary analysis – Oecologia, 120: 386–396.
  • Bertolo A., Carignan R., Magnan P., Pinel-Alloul B., Planas D., Garcia E. 2005 – Decoupling of pelagic and littoral food webs in oligotrophic Canadian Shield lakes - Oikos, 111: 534–546.
  • Boschker H.T.S., Nold S.C., Wellsbury P., Bos D., de Graaf W., Pel R ., Parkes R.J., Cappenberg T.E. 1998 – Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers – Nature, 392: 801–805.
  • Bosley K.L., Wainright S.C. 1999 – Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals – Can. J. Fish. Aquat. Sci. 56: 2181–2185.
  • Bowen G.J., Wassenaar L.I., Hobson K.A. 2005 – Global application of stable hydrogen and oxygen isotopes to wildlife forensics - Oecologia, 143: 337–348.
  • Briers R.A., Gee J.H.R., Cariss H.M., Geoghegan R. 2004 – Inter-population dispersal by adult stoneflies detected by stable isotope enrichment – Freshwat. Biol. 49: 425–431.
  • Burford M.A., Preston N.P., Truong H.M., Tran T.T.H., Bunn S.E., Fry V.M. 2004 – Dominant sources of dietary carbon and nitrogen for shrimp reared in extensive rice-shrimp ponds – Aquacult. Res. 35: 194–203.
  • Butterworth K.G., Li W., McKinley S. 2004 – Carbon and nitrogen stable isotopes: a tool to differentiate between Lepeophtheirus salmonis and different salmonid host species? - Aquacult. 241: 529–538.
  • Cabana G., Rasmussen J.B. 1994 – Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes Nature, 372: 255–257.
  • Cabana G., Rasmussen J.B. 1996 – Comparison of aquatic food chains using nitrogen isotopes – PNAS, 93: 10844–10847.
  • Campana S.E. 1999 – Chemistry and composition of fish otoliths: pathways, mechanisms and applications – Mar. Ecol. Prog. Ser. 188: 263–297.
  • Carman K.R., Fry B. 2002 – Small-sample methods for δ13C and δ15N analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques – Mar. Ecol. Prog. Ser. 240: 85–92.
  • Chamberlain P.M., Bull I.D., Black H.I.J., Ineson P., Evershed R.P. 2004 – Lipid content and carbon assimilation in Collembola: implications for the use of compound-specific carbon isotope analysis in animal dietary studies – Oecologia, 139: 325–335.
  • Charles K., Roussel J.-M., Cunjak R.A. 2004 – Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production – Mar. Freshwat. Res. 55: 185–191.
  • Clapcott J.E., Bunn S.E. 2003 – Can C4 plants contribute to aquatic food webs of subtropical streams? – Freshwat. Biol. 48: 1105–1116.
  • Clarke L.R., Vidergar D.T., Bennett D.H. 2005 – Stable isotopes and gut content show diet overlap among native and introduced piscivores in a large oligotrophic lake – Ecol. Freshwat. Fish, 14: 267–277.
  • Coleman D.C., Fry B. 1991 – Carbon isotope techniques – Academic Press, San Diego, 274 pp.
  • Collier K.J., Bury S., Gibbs M. 2002 – A stable isotope study of linkages between stream and terrestrial food webs through spider predation Freshwat. Biol. 47: 1651–1659.
  • Conover D.O. 1990 – The relationship between capacity for growth and length of growing season: evidence for and implications of countergradient variation – Trans. Am. Fish. Soc. 119: 416–430.
  • Conrad R. 2005 – Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal – Org. Geochem. 36: 739–752.
  • Covich A.P. 2006 – Dispersal-limited biodiversity of tropical insular streams (In: Advances in European Freshwater Sciences, 2005, Eds: Z.M. Gliwicz, G. Mazurkiewicz-Boron, K.J. Rouen) – Pol. J. Ecol. 54: 523–547.
  • Dempson J.B., Power M. 2004 – Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar – Ecol. Freshwat. Fish, 13: 176–184.
  • DeNiro M., Epstein S. 1977 – Mechanism of carbon isotope fractionation associated with lipid synthesis – Science, 197: 261–263.
  • DeNiro M., Epstein S. 1978 – Influence of diet on the distribution of carbon isotopes in animals – Geochim. Cosmochim. Acta, 42: 495–506.
  • DeNiro M.J., Epstein S. 1981 – Influence of diet on the distribution of nitrogen isotopes in animals – Geochim. Cosmochim. Acta, 45: 341–351.
  • Doucett R.R., Hooper W., Power G. 1999 - Identification of anadromous and nonanadromous adult brook trout and their progeny in the Tabusintac River, New Brunswick, by means of multiple-stable-isotope analysis - Trans. Am. Fish. Soc. 128: 278–288.
  • Estep M.L.F., Vigg S. 1985 – Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan lake system, Nevada – Can. J. Fish. Aquat. Sci. 42: 1712–1719.
  • Feuchtmayr H., Grey J. 2003 – Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton – Rapid Commun. Mass Spectrom. 17: 2605–2610.
  • Finlay J.C., Khandwala S., Power M.E. 2002 – Spatial scales of carbon flow in a river food web – Ecology, 83: 1845–1859.
  • Focken U., Becker K. 1998 – Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data – Oecologia, 115: 337–343.
  • France R.L. 1995 – Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes – Limnol. Oceanogr. 40: 1310–1313.
  • Gannes L.Z., O’Brien D.M., Martinez Del Rio C. 1997 – Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments – Ecology, 78: 1271–1276.
  • Gaye-Siessegger J., Focken U., Abel H., Becker K. 2004a – Dietary lipid content influences the activity of lipogenic enzymes in the liver and on whole body δ13C values of Nile tilapia, Oreochromis niloticus (L.) – Isotop. Environ. Health Stud. 40: 181–190.
  • Gaye-Siessegger J., Focken U., Muetzel S., Abel H., Becker K. 2004b – Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies – Oecologia, 138: 175–183.
  • Gearing J.N. 1991 – The study of diet and trophic relationships through natural abundance 13C (In: Carbon isotope techniques, Eds: D.C. Coleman, B. Fry) – Academic Press, San Diego, pp. 201–218.
  • Gherardi F. 2006 – Bioinvasions in freshwaters and the Nero dilemma (In: Advances in European Freshwater Sciences, 2005, Eds: Z.M. Gliwicz, G. Mazurkiewicz-Boron, K.J. Rouen) - Pol. J. Ecol. 54: 549–561.
  • Goedkoop W., Åkerblom N., Demandt M.H. 2006 – Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin – Freshwat. Biol. 51: 878–886.
  • Gorokhova E., Hansson S., Hoeglander H., Andersen C.M. 2005 – Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay – Oecologia, 143: 251–259.
  • Grey J. 2001 – Tracing ontogeny in brown trout (Salmo trutta) from Loch Ness, Scotland, using stable isotopes of carbon and nitrogen - Ecol. Freshwat. Fish, 10: 168–176.
  • Grey J. 2002 – A chironomid conundrum: queries arising from stable isotopes – Verh. Internat. Verein. Limnol. 28: 102–105.
  • Grey J., Jones R.I., Sleep D. 2000 – Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state - Oecologia, 123: 232–240.
  • Grey J., Jones R.I., Sleep D. 2001 – Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis – Limnol. Oceanogr. 46: 505–513.
  • Grey J., Kelly A., Jones R.I. 2004a – High intraspecific variability in carbon and nitrogen stable isotope ratios of individual lake chironomid larvae – Limnol. Oceanogr. 49: 239–244.
  • Grey J., Kelly A., Ward S., Sommerwerk N., Jones R.I. 2004b – Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life-cycle variability – Freshwat. Biol. 49: 681–689.
  • Grey J., Thackeray S.J., Jones R.I., Shine A. 2002 – Ferox trout (Salmo trutta) as “Russian Dolls”: trophic interactions at the top of the Loch Ness food web – Freshwat. Biol. 47: 1235–1244.
  • Grey J., Waldron S., Hutchinson B. 2004c - The utility of carbon and nitrogen isotope analyses to trace contributions from fish farms to the receiving communities of freshwater lakes: a pilot study in Esthwaite Water, UK – Hydrobiologia, 524: 253–262.
  • Gross M.R. 1998 – One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture – Can. J. Fish. Aquat. Sci. 55 (S1): 131–144.
  • Guiger K.R.R.A., Drimmie R., Power M. 2003 – Validating methods for measuring δ18O and δ13C in otoliths from freshwater fish – Rap. Commun. Mass Spectrom. 17: 463–471.
  • Hamilton S.K., Sippel S.J., Bunn S.E. 2005 – Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica – Limnol. Oceanogr. Methods, 3: 149–157.
  • Harrod C., Grey J., McCarthy T.K., Morrissey M. 2005 – Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel - Oecologia, 144: 673–683.
  • Hershey A.E., Pastor J., Peterson B.J., Kling G.W. 1993 – Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river – Ecology, 74: 2315–2325.
  • Hershey A.E., Beaty S., Fortino K., Kelly S., Keyse M., Luecke C., O’Brien W.J., Whalen S.C. 2006 – Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production - Limnol. Oceanogr. 51: 177–188.
  • Hesslein R.H., Hallard K.A., Ramlal P. 1993 – Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C and δ15N – Can. J. Fish. Aquat. Sci. 50: 2071–2076.
  • Hobson K.A. 1999 – Tracing origins and migration of wildlife using stable isotopes: a review - Oecologia, 120: 314–326.
  • Hobson K.A., Wassenaar L.I. 1999 – Stable isotope ecology: an introduction – Oecologia, 120: 312–313.
  • Jahnke L.L., Summons R.E., Dowling L.M., Zahiralis K.D. 1995 – Identification of methanotrophic biomarkers in coldseep mussel gills: chemical and isotopic analysis - Appl. Environ. Microbiol. 61: 576–582.
  • Jahnke L.L., Eder W., Huber R., Hope J.M., Hinrichs K.U., Hayes J.M., Des-Marais D.J., Cady S.L., Summons R.E. 2001 – Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives – Appl. Environ. Microbiol. 67: 5179–5189.
  • Jardine T.D., Gray M.A., McWilliam S.M., Cunjak R.A. 2005 – Stable isotope variability in tissues of temperate stream fishes - Trans. Am. Fish. Soc., 134: 1103–1110.
  • Jones R.I. 1992 – The influence of humic substances on lacustrine planktonic food chains - Hydrobiol. 229: 73–91.
  • Jones R.I. 2005 – Limnology of humic waters: special theme or universal framework? – Verh. Int. Verein. Limnol. 29: 51–60.
  • Jones R.I., Grey J., Quarmby C., Sleep D. 1998 – An assessment using stable isotopes of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness – Proc. Roy. Soc. Lond. B. 265: 105–111.
  • Jones R.I., King L., Dent M., Maberly S.C., Gibson C.E. 2004 – Nitrogen stable isotope ratios in surface sediments, epilithon and macrophytes from upland lakes with differing nutrient status – Freshwat. Biol. 49: 382–391.
  • Kennedy B.P., Blum J.D., Folt C.L., Nislow K.H. 2000 – Using natural strontium isotopic signatures as fish markers: methodology and application – Can. J. Fish. Aquat. Sci. 57: 2280–2292.
  • Kibria G., Nugegoda D., Fairclough R., Lam P. 1997 – The nutrient content and the release of nutrients from fish food and faeces Hydrobiol. 357: 165–171.
  • Kidd K.A., Bootsma H.A., Hesslein R.H., Muir D.C.G., Hecky R.E. 2001 - Biomagnification of DDT through the benthic and pelagic food webs of Lake Malawi, East Africa: Importance of trophic level and carbon source – Environ. Sci. Technol. 35: 14–20.
  • Kidd K.A., Hesslein R.H., Fudge R.J.P., Hallard K.A. 1995 – The influence of trophic level as measured by delta-N-15 on mercury concentrations in fresh-water organisms - Water Air Soil Pollut. 80: 1011–1015.
  • Kidd K.A., Paterson M.J., Hesslein R.H., Muir D.C.G., Hecky R.E. 1999 – Effects of northern pike (Esox lucius) additions on pollutant accumulation and food web structure, as determined by delta C-13 and delta N-15, in a eutrophic and an oligotrophic lake - Can. J. Fish. Aquat. Sci. 56: 2193–2202.
  • Kiljunen M., Grey J., Sinisalo T., Harrod C., Immonen H., Jones R.I. 2006 - A revised model for lipid-normalisation of carbon stable isotope values from aquatic organisms, and implications for the use of isotope mixing models to evaluate diets of consumers - J. Appl. Ecol. 43: 1213–1222
  • King L., Barker P., Grey J. 2006 – Carbon and nitrogen stable isotope signatures of diatom inclusions from lakes of different trophic state – Verh. Internat. Verein. Limnol. 29: 1608–1610.
  • Kiriluk R.M., Whittle D.M., Russell R.W., Cabana G., Rasmussen J.B. 1999 – Stable isotopic compositions of archived walleye tissues as a measure of historical changes in the food web dynamics of the western basin of Lake Erie (In: State of Lake Erie (SOLE) - past, present and future, Eds: M. Munawar, T. Edsall, I.F. Munawar) – Backhuys Publishers, Leiden, pp. 49–479.
  • Kling G.W. 1994 – Ecosytem-scale experiments - the use of stable isotopes in fresh-waters - Adv. Chem. 237: 91–120.
  • Lajtha K., Michener R.H.1994 – Stable isotopes in ecology and environmental science - Blackwell, Oxford, 316 pp.
  • Lodge D.M. 1993 – Biological invasions: lessons for ecology – Trends Ecol. Evol. 8: 133–137.
  • MacLeod N.A., Barton D.R. 1998 – Effects of light intensity, water velocity, and species composition on carbon and nitrogen stable isotope ratios in periphyton – Can. J. Fish. Aquat. Sci. 55: 1919–1925.
  • Maguire C., Grey J. 2006 – Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis – Freshwat. Biol. 51: 1310–1319.
  • Matthews B., Mazumder A. 2003 – Compositional and interlake variability of zooplankton affect baseline stable isotope signatures - Limnol. Oceanogr. 48: 1977–1987.
  • Matthews B., Mazumder A. 2004 – A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization - Oecologia, 140: 361–371.
  • Matthews B., Mazumder A. 2005a – Temporal variation in body composition (C:N) helps explain seasonal patterns of zooplankton δ13C – Freshwat. Biol. 50: 502–515.
  • Matthews B., Mazumder A. 2005b – Consequences of large temporal variability of zooplankton δ15N for modelling fish trophic position and variation – Limnol. Oceanogr. 50: 1404–1414.
  • McCallister S.L., Bauer J.E., Cherrier J.E., Ducklow H.W. 2004 – Assessing sources and ages of organic matter supporting river and estuarine bacterial production: a multiple-isotope (Δ14C, δ13C, and δ15N) approach - Limnol. Oceanogr. 49: 1687–1702.
  • McCarthy I.D., Waldron S. 2000 – Identifying migratory Salmo trutta using carbon and nitrogen stable isotope ratios – Rapid Commun. Mass Spectrom. 14: 1325–1331.
  • McConnaughey T., McRoy C.P. 1979 – Food-web structure and the fractionation of carbon isotopes in the Bering Sea – Mar. Biol. 53: 257–262.
  • McCutchan Jr.J.H., Lewis Jr.W.M., Kendall C., McGrath C.C. 2003 – Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur – Oikos, 102: 378–390.
  • Meili M. 1992 – Sources, concentrations and characteristics of organic-matter in softwater lakes and streams of the Swedish forest region - Hydrobiologia, 229: 23–41.
  • Middleburg J.J., Barranguet C., Boschker H.T.S., Herman P.M.J., Moens T., Heip C.H.R. 2000 – The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study – Limnol. Oceanogr. 45: 1224–1234.
  • Minagawa M., Wada E. 1984 – Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age – Geochim. Cosmochim. Acta, 48: 1135–1140.
  • Nystrom P., McIntosh A.R., Winterbourn M.J. 2003 – Top-down and bottomup processes in grassland and forested streams - – Oecologia, 136: 596–608.
  • Ogawa N.O., Koitabashi T., Oda H., Nakamura T., Ohkouchi N., Wada E. 2001 – Fluctuations of nitrogen isotope ratio of gobiid fish (Isaza) specimens and sediments in Lake Biwa, Japan, during the 20th century - Limnol. Oceanogr. 46: 1228–1236.
  • O’Reilly C.M., Hecky R.E., Cohen A.S., Plisnier P.-D. 2002 – Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels - Limnol. Oceanogr. 47: 306–309.
  • Pace M.L., Cole J.J., Carpenter S.R., Kitchell J.F., Hodgson J.R., Van de Bogert M.C., Bade D.L., Kritzberg E.S., Bastviken D. 2004 – Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs – Nature, 427: 240–243.
  • Paetzold A., Schubert C.J., Tockner K. 2005 – Aquatic-terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects – Ecosystems, 8: 748–759.
  • Pel R., Oldenhuis R., Brand W., Vos A., Gottschal J.C., Zwart K.B. 1997 – Stable-isotope analysis of a combined nitrification-denitrification sustained by thermophilic methanotrophs under low oxygen conditions Appl. Environ. Microbiol. 63: 474–481.
  • Pel R., Floris V., Hoog veld H. 2004 – Analysis of planktonic community structure and trophic interactions using refined isotopic signatures determined by combining fluorescence-activated cell sorting and isotoperatio mass spectrometry – Freshwat. Biol. 49: 546–562.
  • Perga M.E., Gerdeaux D. 2003 – Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001 – J. Fish Biol. 63: 1197–1207.
  • Perga M.E., Gerdeaux D. 2004 – Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonus lavaretus) - Can. J. Fish. Aquat. Sci. 61: 1485–1492.
  • Perga M.E., Gerdeaux D. 2005 – Are fish what they eat all year round? – Oecologia, 14: 598–606.
  • Peters R.H. 1983 – The ecological implications of body size – Cambridge University Press, Cambridge, UK.
  • Peterson B.J., Fry B. 1987 – Stable isotopes in ecosystem studies – Annu. Rev. Ecol. Syst. 18: 293–320.
  • Phillips D.L., Gregg J.W. 2003 – Source partitioning using stable isotopes: coping with too many sources – Oecologia, 136: 261–269.
  • Phillips D.L., Koch P.L. 2002 – Incorporating concentration dependence in stable isotope mixing models – Oecologia, 130: 114–125.
  • Phillips D.L., Newsome S.D., Gregg J.W. 2005 – Combining sources in stable isotope mixing models: alternative methods – Oecologia, 144: 520–527.
  • Pimm S. 1991 – The balance of nature? – University of Chicago Press, Chicago.
  • Pinnegar J.K., Polunin N.V.C. 1999 – Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions – Func. Ecol. 13: 225–231.
  • Polis G.A., Strong D.R. 1996 – Food web complexity and community dynamics – Am. Nat. 147: 813–846.
  • Post D.M. 2002 – Using stable isotopes to estimate trophic position: models, methods and assumptions – Ecology, 83: 703–718.
  • Post D.M. 2003 – Individual variation in the timing of ontogenetic niche shifts in largemouth bass – Ecology, 84: 1298–1310.
  • Power M., Guiguer K.R.R.A., Barton D.R. 2003 – Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies – Rapid Commun. Mass Spectrom. 17: 1619–1625.
  • Pulido-Villena E., Reche I., Morales-Baquero R. 2005 – Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach – Can. J. Fish. Aquat. Sci. 62: 2640–2648.
  • Radajewski S., Ineson P., Parekh N.R., Murrell J.C. 2000 – Stable isotope probing as a tool in microbial ecology – Nature, 403: 646–649.
  • Robbins C.T., Hilderbrand G.V., Farley S.D. 2002 – Incorporating concentration dependence in stable isotope mixing models: a response to Phillips and Koch (2002) – Oecologia, 133: 10–13.
  • Sanzone D.M., Meyer J.L., Marti E., Gardiner E.P., Tank J.L., Grimm N.B. 2002 – Carbon and nitrogen transfer from a desert stream to riparian predators – Oecologia, 134: 238–250.
  • Sarakinos H.C., Johnson M.L., Vander Zanden M.J. 2002 – A synthesis of tissuepreservation effects on carbon and nitrogen stable isotope signatures – Can. J. Zool. 80: 381–387.
  • Sotiropoulos M.A., Tonn W.M., Wassenaar L.I. 2004 – Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies – Ecol. Freshwat. Fish, 13: 155–160.
  • Sweeting C.J., Polunin N.V.C., Jennings S. 2004 – Tissue and fixative dependent shifts of δ13C and δ15N in preserved ecological material - Rapid Commun. Mass Spectrom. 18: 2587–2592.
  • Sweeting C.J., Jennings S., Polunin N.V.C. 2005 – Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory – Func. Ecol. 19: 777–784.
  • Syväranta J., Grey J., Jones R.I., Rask M., Salonen M. 2006 – The contribution of trophic position to the mercury content of pike (Esox lucius) in small boreal lakes – Verh. Internat. Verein. Limnol. 29: 1757–1761.
  • Thackeray S.J., George D.G., Jones R.I., Winf ield I.J. 2004 – Quantitative analysis of the importance of wind-induced circulations for the spatial structuring of planktonic populations – Freshwat. Biol. 49: 1091–1102.
  • Tsukamoto K., Arai T. 2001 – Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats – Mar. Ecol. Prog. Ser. 220: 265–276.
  • Tully O., Nolan D.T. 2002 – A review of the population biology and host-parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae) – Parasitol. 124: 5165–5182.
  • Vadeboncoeur Y., Lodge D.M., Carpenter S.R. 2001 – Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats – Ecology, 82: 1065–1077.
  • Vander Zanden M.J., Casselman J.M., Rasmuss en J.B. 1999 – Stable isotope evidence for the food web consequences of species invasions in lakes – Nature, 401: 464–467.
  • Vander Zanden M.J., Olden J.D., Thorne J.H., Mandrak N.E. 2004 – Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes – Ecol. Appl. 14: 132–148.
  • Vander Zanden M.J., Rasmussen J.B. 1999 – Primary consumer δ15N and δ13C and the trophic position of aquatic consumers - Ecology, 80: 1395–1404.
  • Vanderklift M., Ponsard S. 2003 – Sources of variation in comsumer-diet δ15N enrichment: a meta-analysis – Oecologia, 136: 169–182.
  • Wainright S.C., Fogarty M.J., Greenfield R.C., Fry B. 1993 – Long-term trends in the Georges Bank food web: trends in stable isotopic compositions of fish scales – Mar. Biol. 115: 481–493.
  • Weber P.K., Hutcheon I.D., McKeegan K.D., Ingram B.L. 2002 – Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history – Can. J. Fish. Aquat. Sci. 59: 587–591.
  • Weisse T. 2006 – Biodiversity of freshwater microorganisms – achievements, problems, and perspectives (In: Advances in European Freshwater Sciences, 2005, Eds: Z.M. Gliwicz, G. Mazurkiewicz-Boron, K.J. Rouen) – Pol. J. Ecol. 54: 633–652.
  • Whiticar M.J. 1999 – Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane – Chem. Geol. 161: 291–314.
  • Whitledge G.W., Rabeni C.F. 1997 – Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis – Can. J. Fish. Aquat. Sci. 54: 2555–2563.
  • Wurster C.M., Patterson W.P. 2001a – Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacus trine freshwater molluscs: Paleoclimatological implications for sub-weekly temperature records – J. Paleolimnol. 26: 205–218.
  • Wurster C.M., Patterson W.P. 2001b – Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of saggital otoliths – Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 81–100.
  • Yokoyama H., Higano J., Adachi K., Ishihi Y., Yamada Y., Pichitkul P. 2002 - Evaluation of shrimp polyculture system in Thailand based on stable carbon and nitrogen isotope ratios – Fish. Sci. 68: 745–750.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1546-6153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.