PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of capillary tube applications in a transcritical heat pump system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Capillary tubes have been used in refrigeration systems for many years, but not with a transcritical CO[2] system. The effects of capillary tubes in a transcritical CO[2] refrigerating system have been investigated theoretically. This paper presents a non-adiabatic homogeneous model of carbon dioxide flow through a capillary tube, where the carbon dioxide undergoes a phase change from supercritical fluid flow to subcritical two-phase flow. The model is based on fundamental conservation equations of mass, momentum and energy. These equations are solved simultaneously through iterations. The in-tube flow can be divided into a single-phase region and a two-phase region. The extreme choked situation at the outlet is evaluated by local sonic velocity judgment. Relationships between gas cooler pressure, evaporating temperature, ambient heat transfer coefficient and other parameters are presented and analyzed in detail.
Rocznik
Strony
123--146
Opis fizyczny
Rys., wz., wykr.,Bibliogr. 27 poz.,
Twórcy
autor
autor
  • Mechanika, chłodnictwo, radiestezja. Prof. Polit. Wrocławskiej.
Bibliografia
  • [1] BAEHR: Termodynamics, Springer Verlag, 1983.
  • [2] BANSAL P. K., XU B.: A parametric study of refrigerant flow in non-adiabatic capillary tubes, Appl. Thermal Eng. 23(2003), 397-408.
  • [3] BRITTLE R. R., PATE M. B.: A theoretical model for predicting adiabatic capillary tube performance with alternative refrigerants, ASHRAE Trans. 102 (2) (1996), 52-64.
  • [4] BROWN J. S., YANA-MOTTA S., DOMANSKI P. A.: Comparative analysis of an automotive air conditioning systems operating with CO2 and R134a, Int. J. of Refigeration, 2002, No 25, 19-32.
  • [5] CHEN Y., GU J.: Non-adiabatic capillary tube flow of carbon dioxide in a novel refrigeration cycle, Applied Thermal Engineering 25(2005), 1670-1683.
  • [6] CHUN-LU ZHANG: Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network, Int. J. of Refrigeration, Vol: 28 issue: 4, June, 2005, 506-514.
  • [7] CHURCHILL S. W.: Friction-factor equation spans all fluid-flow regimes, Chem. Eng. 84 (7) (1977), 91-92.
  • [8] FANG X., BULLARD C. W., HRNJAK P. S.: Heat transfer and pressure drop of gas coolers, ASHRAE Trans. 107 (Part I) (2001), 255-266.
  • [9] JONGMIN CHOI, YONGCHAN KIM, HO YOUNG KIM: A generalized correlation for refrigerant mass flow rate through adiabatic capillary tubes, Int. J. of Refrigeration 26(2003), 88, 1-888.
  • [10] JONGMIN CHOI, YONGCHAN KIM, JIN TAEK CHUNG: An empirical correlation and rating charts for the performance of adiabatic capillary tubes with alternative refrigerants, Applied Thermal Engineering, 24(2004), 29-41.
  • [11] KRÓLICKI Z.: Critical mass flow rate in two-phase refrigerant throttling process - mathematical model and application, Recent Development in Multiphase Flow, 1st Conference, Stawiska 1999, 133-155.
  • [12] KRÓLICKI Z.: Throttling of two-phase refrigerants, ITCiMP Monographs 20/91, Wrocław University of Technology, 1991 (in Polish).
  • [13] KRÓLICKI Z.: Mathematical model of small refrigeration system heat exchanger, Konferencja Wymiana Ciepła i Odnawialne Źródła Energii, Świnoujście, 1998.
  • [14] LIAO S. M., ZHAO T. S., JAKOBSEN A.: A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles, Applied Thermal Engineering, 2000, No 20, 831-841.
  • [15] LIN S., KWOK C. C. K., LI R. Y., CHEN Z. H., CHEN Z. Y.; Local frictional pressure drop during vaporization of R-12 through capillary tubes, Int. J. Multiphase Flow 17 (1) (1991), 95-102.
  • [16] MACZEK K., KRÓLICKI Z.: New throttling device as capillary tube for small refrigeration and air conditioning systems, Proc. of the XVIIIth ICR. IIR, Paris. Montreal, Quebec, August 10-17, 1991. Vol. 3, 1079-1083.
  • [17] MACZEK K., KRÓLICKI Z.: Nonadiabatic process in throttling capillary tube in packaged units, IIR Meeting of Com. Bi, B2, Essen, 1987.
  • [18] PATE M. B., TREE D. R.: Two-phase critical flow in a diabatic capillary tube, IIR Conf. Com. B1, B2, E1,E2, Purde University, West Lafayette, USA, 5-8 August 1996.
  • [19] PETROV N. E., POPOV V. N.: Heat transfer and resistance of carbon dioxide being cooled in the supercritical region, Thermal Eng. 32 (3) (1985) 13 i-134.
  • [20] PETTERSEN J., HAFNER A., SKAUGEN G.: Development of compact heat exchangers for CO2 air-conditioning systems, Int. J. Refrig., 21(3) (1998), 180-193. Baehr.: Termodynamic, Springer Verlag, 1983.
  • [21] PETTERSEN J., LORENTZEN G.: New efficient and environmentally benign system for car airconditioning, Int. J. of Refigeration, 1993, Vol 16, No 1, 4-12.
  • [22] ROZHENTSEY A., WANG C.: Some design features of a CO2 air conditioner, Applied Thermal Engineering, 2001, No 21, 871-880.
  • [23] SAMI S. M., MALTAIS H.: Numerical modelling of alternative refrigerants to HCFC-22 tbrough capillary tubes, Int. J. Energy Res., 24(2000), 1359-1371.
  • [24] TONG L.: Boiling Heat Transfer and Two-Phase Flow, I.W., New York, 1965.
  • [25] WALLIS G.: One-Dimensional Two-Phase Flow, Mc G-H Book Comp., New York, 1989.
  • [26] XU B., BANSAL P. K.: Non-adiabatic capillary tube how: a homogeneous model and process description, Appl. Thermal Eng., 22(2002), 1801-1819.
  • [27] YOO S. H., KIM J. H., HWANG Y. W., KIM M. S., MIN K., KIM Y.: Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, Int. J. Refrig. 26(2003), 857-864.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1546-6126
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.