Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A model of transient ID conduction-radiation heat transfer in absorbing, emitting and isotropically scattering grey medium with boundary conditions of the third kind for temperature has been considered in this paper. It has been assumed that boundaries of the plane layer of thickness L were of diffusive character. To solve the boundary-value problem a finite difference method (FDM) together with a two-flux method (TFM) based on the Schuster-Schwarzschild approximation was used. In the inverse formulation of the problem it has been accepted as the unknown quantities the total panchromatic hemispherical emissivity [epsilon][1] of the sample surface exposed to external incident radiation and the temperature-dependent thermal conductivity k(T) and specific heat c[p](T) of the sample material. The coefficient inverse heat transfer problem (CIHTP) was solved iteratively using the Levenberg-Marquardt algorithm to find a minimum of a mean square functional J involving residuals between the measured and calculated temperatures. It has been found that the final time of measurements t[f] should be correlated with the disturbance magnitude ZAB so as to reduce uncertainty of the estimated parameters.
Czasopismo
Rocznik
Tom
Strony
39--62
Opis fizyczny
Wz., wykr., tab.,Bibliogr. 12 poz.,
Twórcy
autor
- Wojskowa Akademia Techniczna, Warszawa, jzmywaczyk@wat.edu.pl
Bibliografia
- [1] MODEST M.F.: Radiative heat transfer, New York: McGraw-Hill, 1993.
- [2] ALIFANOV O. M., ARTYUKHIN E. A., RUMYANTSEV S. V.: Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, New York, Begell House 1995.
- [3] ÖZISIK M.N., ORLANDE H.R.B.: Inverse heat transfer. Fundamentals and applications, Taylor&Francis, New York 2000.
- [4] PARK H.M., YOON T.Y.: Solution of the inverse radiation problem using a conjugate gradient method, Int. J. Heat Mass Transfer, 43, 2000, 1767-1776.
- [5] LAZARD M., ANDRE S., MAILLET D., DEGIOVANNI A.: Radiative and conductive heat transfer: a coupled model for parameter estimation, High Temperatures – High Pressures, 32, 2000, 9-17.
- [6] YOSHIDA A., FUJISAKI T., TADOKORO H., WASHIO S.: Simuloteueous measurement of thermophysical and radiative properties of semi-transparent liquids, Fluid Phase Equilibria., 125, 1996, 275-282.
- [7] DARYABEIGI K.: Heat transfer in high-temperature fibrous insulation, Proc. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, INTERNET - http://library-dispace.larc.nasa.gov/dispace/jsp/bistream/2002/14168/1/NASA-aiaa-2002-3332.pdf
- [8] SIEGEL R.: Two-flux method for transient radiative transfer in a semitransparent layer. Technical Note. Int. J. Heat Mass Transfer, 39, 1996, No. 5, 1111-1115.
- [9] KOSMA Z.: Numerical methods for engineering applications, Wydawnictwo Politechniki Radomskiej, Radom 1999 (in Polish).
- [10] BECK J.V., ARNOLD K.J.: Parameter estimation in engineering and science (1st ed.). New York: John Wiley 1977.
- [11] User’s manual FORTRAN subroutines for mathematical applications. Math/Library version 2.0, IMSL Inc., Houston, Texas USA. (1991).
- [12] ZMYWACZYK J.: Numerical estimation of the temperature dependent thermophysical parameters by means of the inverse method - 2D approach, Archives of Thermodynamics, Vol. 27(2006), No. 2, str. 37-54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1546-6112