PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Daphnia: model herbivore, predator and prey

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the past 30 years, Daphnia has become a model organism in aquatic ecology. I review the changing concepts and paradigms in plankton ecology as reflected in the work on Daphnia. The availability of radiotracers favoured a new physiological approach that resulted in better energetic models and more reliable estimates of filtering rates. This led to deeper insights into the role of herbivore grazing on phytoplankton and microbial communities, and nutrient recycling. It provided a conceptual basis for general hypotheses on predictable seasonal successions (e.g. the PEG model). On the other hand, increasing knowledge about selective predation on zooplankton triggered population dynamic models and gave explanations for changing community structures. The Size-Efficiency-Hypothesis generated a framework for studies on trade-offs between competitive ability and susceptibility to predation. Daphnia was now in the centre of interaction-based concepts, being predator and prey at the same time. It was the backbone of practical applications of the theory in food-web manipulations. When ultimate factors came into the focus, Daphnia played an important role in explaining striking phenomena like diel vertical migration and cyclomorphosis. Its central position in food-webs, the unique propagation mode, easy cultivation and accessibility by molecular genetic methods made it a favourite object for studies in evolutionary ecology, concerning local adaptation, evolution of defences and life histories, induced phenotypic change, and genetic diversity. The large advantage of Daphnia over other biological model organisms is that its importance in pelagic freshwater systems is undoubtedly known. Hence there is a direct way of applying the results to ecological systems.
Twórcy
  • Max Planck Institute for Limnology, Postfach 165, D-24302 Plön, Germany
  • Hydrobiolog, limnolog.
Bibliografia
  • Banta A.M. 1939 – Studies on the physiology, genetics, and evolution of some Cladocera - Carnegie Institution of Washington, Washington, D. C., 285 pp.
  • Becker C., Boersma M. 2005 – Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction - Limnol. Oceanogr. 50: 388–397.
  • Brendelberger H. 1991 – Filter mesh size of cladocerans predicts retention efficiency for bacteria – Limnol. Oceanogr. 36: 884–894.
  • Brooks J.L., Dodson S.I.1965 – Predation, body size, and composition of plankton – Science, 150: 28–35.
  • Burns C.W. 1968 – The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested – Limnol. Oceanogr. 13: 675–678.
  • Cowgill U.M., Milazzo D.P. 1990 – The sensitivity of two cladocerans to water quality variables: salinity and hardness – Arch. Hydrobiol. 120: 185–196.
  • DeAngelis D.L., Gross L.J. (Eds) 1992 - Individual-based models and approaches in ecology – Chapman and Hall, New York, NY.
  • Decaestecker E., Declerck S., De Meester L., Ebert D. 2005 – Ecological implications of parasites in natural Daphnia populations - Oecologia, 144: 382–390.
  • DeMott W.R. 1989 – The role of competition in zooplankton succession. (In: Plankton Ecology. Succession in plankton communities, Ed. U. Sommer) – Springer-Verlag, Heidelberg, pp. 195–252.
  • Dodson S.I. 1974 – Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis – Ecology, 55: 605–613.
  • Ebert D. 2005 – Ecology, epidemiology, and evolution of parasitism in Daphnia [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books.
  • Ebert D., Carius H.J., Little T., Decaestecker E. 2004 – The evolution of virulence when parasites cause host castration and gigantism – Am. Nat. 164: 19–32.
  • Edmondson W.T. 1972 – Instantaneous birth rates of zooplankton – Limnol. Oceanogr. 17: 792–795.
  • Edmondson W.T. 1987 – Daphnia in experimental ecology: notes on historical perspectives - Mem. Ist. Ital. Idrobiol. 45: 11–30.
  • Gause G.J. 1934 – The struggle for existence - Williams and Wilkins, Baltimore.
  • Geller W. 1975 – Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergröße und dem Hungerzustand der Tiere [Food uptake of Daphnia pulex depending on food concentration, temperature, body size and hunger status] – Arch. Hydrobiol. Suppl. 48: 47–107. (in German)
  • Gerritsen J., Porter K.G., Strickler J.R. 1988 – Not by sieving alone: Observations of suspension feeding in Daphnia – Bull. Mar. Sci. 43: 366–376.
  • Gilbert J.J. 1999 – Kairomone-induced morphological defenses in rotifers (In: The ecology and evolution of inducible defenses, Eds: R. Tollrian, C.D. Harvell) – Princeton University Press, Princeton, NJ, pp. 127–141.
  • Gliwicz Z.M. 1980 – Filtering rates, food size selection, and feeding rates in cladocerans - another aspect of interspecific competition in filter-feeding zooplankton (In: Evolution and ecology of zooplankton communities, Ed. W.C. Kerfoot) – University Press of New England, Hanover, NH, pp. 282–291.
  • Gliwicz Z.M. 1990 – Food thresholds and body size in cladocerans – Nature, 343: 638–640.
  • Gliwicz Z.M. 2003 – Between hazards of starvation and risk of predation: The ecology of offshore animals – International Ecology Institute, Oldendorf, Luhe, 379 pp.
  • Hairston N.G.Jr., Holtmeier C.L., Lampert W., Weider L.J., Post D.M., Fischer J.M., Caceres C.E., Fox J.A, Gaedke U. 2001 – Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? – Evolution, 55: 2203–2214.
  • Hairston N.G.jr., Lampert W., Cáceres C.E., Holtmeier C.L., Weider L.J., Gaedke U., Fischer J.M., Fox J.A., Post D.M. 1999 – Rapid evolution revealed by dormant eggs – Nature, 401: p. 446.
  • Hall D., Threlkeld S.T., Burns C.W., Crowley P.H. 1976 – The size-efficiency hypothesis and the size structure of zooplankton communities – Ann. Rev. Ecol. Syst. 7: 177–208.
  • Haney J.F. 1973 – An in situ examination of the grazing activities of natural zooplankton communities – Arch. Hydrobiol. 72: 87–132.
  • Hebert P.D.N. 1980 – The genetics of Cladocera (In: Evolution and ecology of zooplankton communities, Ed. W.C. Kerfoot) – University Press of New England, Hanover, NH, pp. 329–336.
  • Heisey D., Porter K.G. 1977 – Effect of ambient oxygen concentration on filtering and respiration rates of Daphnia galeata mendotae and Daphnia magna – Limnol. Oceanogr. 22: 839–845.
  • Holling C.S. 1959 – The components of predation as revealed by a study of small-mammal predation of the European pine sawfly – Can. Entomol. 91: 293–320.
  • Hrbacek J. 1962 – Species composition and the amount of zooplankton in relation to the fish stock – Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved. 72: 1–116.
  • Jeschke J.M., Kopp M., Tollrian R. 2004 - Consumer-food systems: Why type one functional responses are exclusive to filter feeders – Biol. Rev. Cambridge Phil. Soc. 79: 337–349.
  • Jürgens K. 1994 – Impact of Daphnia on planktonic microbial food webs – A review –Mar. Microb. Food Webs, 8: 295–324.
  • Jürgens K., Stolpe G. 1995 – Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake – Freshwat. Biol. 33: 27–38.
  • Kerfoot W.C., DeMott W.R., DeAngelis D.L. 1985 – Interactions among cladocerans: food limitation and exploitative competition - Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 431–451.
  • Kerfoot W.C., Sih A. (Eds) 1987 – Predation. Direct and indirect impacts on aquatic communities – University Press of New England, Hanover, NH, 386 pp.
  • Kerfoot W.C., Weider L.J. 2004 – Experimental paleoecology (resurrection ecology): Chasing Van Alen’s Red Queen hypothesis - Limnol. Oceanogr. 49: 1300–1316.
  • Kersting K. 1978 – Some features of feeding, respiration and energy conversion of Daphnia magna – Hydrobiologia, 59: 113–120.
  • Kreutzer C., Lampert W. 1999 – Exploitative competition in differently sized Daphnia species: A mechanistic explanation – Ecology, 80: 2348–2357.
  • Lampert W. 1977a – Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species - Arch. Hydrobiol. Suppl. 48: 310–335.
  • Lampert W. 1977b – Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. III. Production and production efficiency – Arch. Hydrobiol. Suppl. 48: 336–360.
  • Lampert W. 1977c – Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. IV. Determination of the “threshold” concentration as a factor controlling the abundance of zooplankton species - Arch. Hydrobiol. Suppl. 48: 361–368.
  • Lampert W. 1978a – Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance – Verh. Internat. Verein. Limnol. 20: 969–974.
  • Lampert W. 1978b – Release of dissolved organic carbon by grazing zooplankton – Limnol. Oceanogr. 23: 831–834.
  • Lampert W. 1987 – Feeding and nutrition in Daphnia – Mem. Ist. Ital. Idrobiol. 45: 143–192.
  • Lampert W. 1988 – The relative importance of food limitation and predation in the seasonal cycle of two Daphnia species – Verh. Internat. Verein. Limnol. 23: 713–718.
  • Lampert W. 1993 – Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis – Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88.
  • Lampert W., Trubetskova I. 1996 – Juvenile growth rate as a measure of fitness in Daphnia - Func. Ecol. 10: 631–635.
  • Loose C.J. 1993 – Daphnia diel vertical migration behavior: Response to vertebrate predator abundance – Arch. Hydrobiol. Beih. Ergeb. Limnol. 39: 29–36.
  • McCauley E., Nisbet R.M., De Roos A.M., Murdoch W.W., Guerney W.S.C. 1996 – Structured population models of herbivorous zooplankton – Ecol. Monogr. 66: 479–501.
  • McCauley E., Nisbet R.M., Murdoch W.W., de Roos A.M., Gurney W.S.C. 1999 – Large-amplitude cycles of Daphnia and its algal prey in enriched environments - Nature, 402: 653–656.
  • McMahon J.W., Rigler F.H. 1965 – Feeding rates of Daphnia magna Straus in different foods labeled with radioactive phosphorus - Limnol. Oceanogr. 10: 105–113.
  • Mitchell S.E., Halves J., Lampert W. 2004 - Coexistence of similar genotypes of Daphnia magna in intermittent populations: response to thermal stress – Oikos, 106: 469–478.
  • Muck P., Lamper t W. 1980 – Feeding of freshwater filter-feeders at very low food concentrations: poor evidence for “threshold feeding” and “optimal foraging” in Daphnia longispina and Eudiaptomus gracilis – J. Plankton Res. 2: 367–379.
  • Müller-Navarra D.C. 1995 – Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature – Arch. Hydrobiol. 132: 297–307.
  • O’Brien W.J. 1987 – Planktivory by freshwater fish: Thrust and parry in the pelagia (In: Predation: direct and indirect impacts on aquatic communities, Eds: W.C. Kerfoot, A. Sih) - University Press of New England, Hanover, NH, pp. 3–16.
  • Pastorok R.A. 1981 – Prey vulnerability and size selection by Chaoborus larvae – Ecology, 62: 1311–1324.
  • Pernthaler J., Zöllner E., Warnecke F., Jürgens K. 2004 – Bloom of filamentous bacteria in a mesotrophic lake: identity and possible controlling mechanism. – Appl. Envir. Microbiol. 70: 6272–6281.
  • Pirow R., Wollinger F., Paul R.J. 1999 - The sites of respiratory gas exchange in the planktonic crustacean Daphnia magna: An in vivo study employing blood haemoglobin as an internal oxygen probe – J. Exp. Biol. 202: 3089–3099.
  • Pollard H.G., Colbourne J.K., Keller W. 2003 – Reconstruction of centuries-old Daphnia communities in a lake recovering from acidification and metal contamination – Ambio, 32: 214–218.
  • Porter K.G. 1977 – The plant-animal interface in freshwater ecosystems – Am. Sci. 65: 159–170.
  • Reynolds C.S. 1994 – The ecological basis for the successful biomanipulation of aquatic communities – Arch. Hydrobiol. 130: 1–33.
  • Reynolds C.S. 1997 – Vegetation processes in the pelagic: A model for ecosystem theory - Ecology Institute, Oldendorf/Luhe, 371 pp.
  • Ringelberg J. 1991 – A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina – J. Plankton Res. 13: 83–89.
  • Shapiro J., Lamarra V., Lynch M. 1975 - Biomanipulation: An ecosystem approach to lake restoration (In: Proceedings of the Symposium on Water Quality Management through Biological Control, Eds: P.L. Brezonik, J.L. Fox) – University of Florida, Gainesville, FL, pp. 85–96.
  • Sommer U., Gliwicz Z.M., Lampert W., Duncan A. 1986 – The PEG model of seasonal succession of planktonic events in fresh waters – Arch. Hydrobiol. 106: 433–471.
  • Stearns S.C. 1992 – The evolution of life histories - Oxford University Press, New York, 249 pp.
  • Sterner R.W. 1986 – Herbivores’ direct and indirect effects on algal populations – Science, 231: 605–607.
  • Sterner R.W., Elser J.J. 2002 – Ecological stoichiometry – Princeton University Press, Princeton, NJ, 439 pp.
  • Sterner R.W., Hagemeier D.D., Smith W.L., Smith R.F. 1993 – Phytoplankton nutrient limitation and food quality for Daphnia - Limnol. Oceanogr. 38: 857–871.
  • Stibor H., Lüning J. 1994 – Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea; Cladocera) – Func. Ecol. 8: 97–101.
  • Taylor B.E., Gabriel W. 1992 – To grow or not to grow: optimal resource allocation for Daphnia – Am. Nat. 139: 248–266.
  • Taylor B.E., Slatkin M. 1981 – Estimating birth and death rates of zooplankton – Limnol. Oceanogr. 26: 143–158.
  • Tilman D. 1982 – Resource competition and community structure – Princeton University Press, Princeton, NJ, 296 pp.
  • Tollrian R. 1995 – Chaoborus crystallinus predation on Daphnia pulex: Can induced morphological changes balance effects of body size on vulnerability? – Oecologia, 101: 1691–1705.
  • Tollrian R., Dodson S.I. 1999 – Inducible defenses in Cladocera: constraints, costs, and multiple predator environments (In: The ecology and evolution of inducible defenses, Eds: R. Tollrian, C.D. Harvell) – Princeton University Press, Princeton, New Jersey, pp. 177–202.
  • Tollrian R ., Harvell C.D. (Eds) 1999 – The ecology and evolution of inducible defences Princeton University Press, Princeton, New Jersey, 383 pp.
  • Trubetskova I., Lampert W. 2002 – The juvenile growth rate of Daphnia: A short-term alternative to measuring the per capita rate of increase in ecotoxicology? – Arch. Environ. Contam. Toxicol. 42: 193–198.
  • Van Donk E., Lürling M., Lampert W. 1999 – Consumer-induced changes in phytoplankton: inducibility, costs, benefits, and the impact on grazers (In: The ecology and evolution of inducible defenses, Eds: R. Tollrian, C.D. Harvell) – Princeton University Press, Princeton, New Jersey, pp. 89–103.
  • Weider L.J., Lampert W., Wessels M., Colbourne J.K., Limburg P. 1997 - Long-term genetic shifts in a microcrustacean egg bank associated with anthropogenic changes in the Lake Constance ecosystem - Proc. Roy. Soc. Lond. B, 264: 1613–1618.
  • Weismann A. 1880 – Beiträge zur Naturgeschichte der Daphnoiden [Studies on the natural history of the Daphnoidea] – Zeitschrift für wissenschaftliche Zoologie, 33: 55–270. (in German)
  • Woltereck R. 1920 – Variation und Artbildung. Analytische und experimentelle Untersuchungen an pelagischen Daphniden und anderen Cladoceren [Variation and speciation. Analytical and experimental studies on pelagic daphnids and other cladocerans] – Int. Revue Ges. Hydrobiol. 9: 1–151. (in German)
  • Zaret T.M. 1980 – Predation and freshwater communities – Yale University Press, New Haven, CN.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1546-5938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.