PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silica origin and solubility in groundwater from the weathered zone of sedimentary rocks of the Intra-Sudetic Basin, SW Poland

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The groundwaters studied in the Intra-Sudetic Basin, SW Poland, occur in the regolith and in the fissured bedrock. Silica concentration in groundwaters ranges from 0,7 to 24,1 mg/L SiO2. Mineral phases that are the source of silica solute were pointed out on bedrock mineralogy and saturation state analysis. Interpretation of aqueous chemistry in terms of mineral stability confirms that partial geochemical equilibrium is maintained. In groundwater with pH values below 4.8 from the fissured aquifer in Carboniferous siliciclastic rocks, kaolinite controls silica solubility. Congruent dissolution of the allophane phase and/or incongruent reaction between the Al(OH)3 form and kaolinite/ halloysite or allophane can be responsible for silica activity in groundwater, with pH values between 5,5 and 6,7, from the regolith on Carboniferous rocks and from the fissured aquifer in Cretaceous mudstones.Groundwaters with pH values above 6,7 occur in the Permian and Cretaceous fissured aquifers which contain calcite/dolomite minerals. Silica and aluminium concentrations in these aquifers are clearly maintained by equilibrium with the hydroxyaluminosilicate HASB. The solubility constant of HASB estimated on groundwater chemistry is lgK HASB = -44,88 (± 0,48), which is lower than the recently published experimental value (SCHNEIDER and al. 2004). In groundwater with pH values between 4,8 and 5,5 from the regolith sampled during snow melt, equilibrium, even with reversible secondary aluminosilicates, is not maintained. Silicon and aluminium concentrations result from kinetics or steady-state between weathering release and hydrological removal.
Rocznik
Strony
445--462
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Institute of Hydrogeology and Engineering Geology, Warsaw University Żwirki i Wigury 93, PL-02-089 Warsaw, Poland
Bibliografia
  • ASANO, Y., UCHIDA, T. & OHTE, N. 2003. Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment. Geochimica et Cosmochimica Acta, 67 (11), 1973-1989.
  • CAMPBELL, P.G.C., THOMASSIN, D. & TESSIER, A. 1986. Aluminum speciation in running waters in the Canadian pre-cambrian shield: kinetic aspects. Water, Air and Soil Pollution, 30, 1023-1032.
  • DOBRZYŃSKI, D. 1997. Aluminium hydrogeochemistry in areas affected by acid rains in the Intra-Sudetic Depression, SW Poland. pp. 1-149. Unpublished Ph.D. thesis, Institute of Hydrogeology and Engineering Geology, Warsaw University. [In Polish]
  • — 2005. Weathering contribution of volcanogenic rocks to silica concentration in groundwater of headwater catchments (the Sudetes Mts, SW Poland). Silica release and reversible aluminosilicate solids stability. Rocznik Polskiego Towarzystwa Geologicznego (submitted)
  • DON, J., JERZYKIEWICZ, T., TEISSEYRE, A.K. & WOJCIECHOWSKA, I. 1981. Explanations to the Geological Map of Sudetes, 1:25 000, sheet Lubawka, pp. 1-89. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • DOUCET, F.J., SCHNEIDER, C., BONES, S.J., KRETCHMER, A., MOSS, I., TEKELY, P. & EXLEY, C., 2001. The formation of hydroxyaluminosilicates of geochemical and biological significance. Geochimica et Cosmochimica Acta, 65, 2461–2467.
  • DZIEDZIC, K. & TEISSEYRE, A.K. 1990. The Hercynian molasse and younger deposits in the Intra-Sudetic Depression, SW Poland. Neues Jahrbuch für Geologie und Pallontolgie, Abhandlungen, 179 (2/3), 285-305.
  • ERIKSSON, E. 1981. Aluminium in groundwater. Possible solution equilibria. Nordic Hydrology, 12, 43-50.
  • EXLEY, C., PINNEGAR, J.K. & TAYLOR, H. 1997. Hydroxyaluminosilicates and acute aluminium toxicity in fish. Journal of Theoretical Biology 189, 133-139.
  • EXLEY, C., SCHNEIDER, C. & DOUCET, F.J. 2002. The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium? Coordination Chemistry Reviews, 228, 127-135.
  • FARMER, V.C. & FRASER, A.R. 1982. Chemical and colloidal stability of sols in the Al2O3-Fe2O3-SiO2-H2O system: their role in podzolization. Journal of Soil Science, 33, 737-742.
  • FARMER, V.C. & LUMSDON, D.G. 1994. An assessment of complex formation between aluminium and silicic acid in acidic solutions. Geochimica et Cosmochimica Acta, 58, 3331-3334.
  • FARMER, V.C., RUSSELL, J.D. & BERROW, M.L. 1980. Imogolite and proto-imogolite allophane in spodic horizons: evidence for a mobile aluminium silicate complex in podzol formation. Journal of Soil Science, 31, 673-684.
  • GROCHOLSKI, A. 1973. Explanations to the Geological Map of Sudetes, 1: 25 000, sheet Mieroszów, pp. 1-73. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • GUSTAFSSON, J.P., BHATTACHARYA, P. & KARLTUN, E. 1999. Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden. Applied Geochemistry, 14, 707-718.
  • GUSTAFSSON, J.P., LUMSDON, D.G. & SIMONSSON, M. 1998. Aluminium solubility characteristics of spodic B horizons containing imogolite-type materials. Clay Minerals, 33, 77-86.
  • HEM, J.D. 1989. Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water Supply Paper, 2254. pp. 264.
  • HINTON, M.J., SHIFF, S.L. & ENGLISH, M.C. 1994. Examining the contribution of glacial till water to storm runoff using two and three-component hydrograph separation. Water Resources Research, 30, 983 - 993.
  • JERZYKIEWICZ, T. 1971. Cretaceous of the Krzeszów area. Geologia Sudetica, 5, 281-318. [In Polish with English summary]
  • KOWALSKI, S. 1992. Natural factors affecting groundwater occurrence in the Sudetes region. Acta Univ. Wratisl., no. 1324, Prace Geologiczno-Mineralogiczne, 25, 1-67. [In Polish]
  • LUMSDON, D.G. & FARMER, V.C. 1995. Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminium solutions. European Journal of Soil Sciences, 46, 179-186.
  • MACIOSZCZYK, A. & DOBRZYŃSKI, D. 2002. Hydrogeochemistry of short turn-over time zone, pp. 1-425. Wydawnictwo Naukowe PWN; Warszawa. [In Polish]
  • NDAYIRAGIJE, S. & DELVEAUX, B. 2003. Coexistence of allophane, gibbsite, kaolinite and hydroxy-Al-interlayered 2:1 clay minerals in a perudic Andisol. Geoderma, 117, 203-214.
  • NORDSTROM, D.K. 1982. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K. Geochimica et Cosmochimica Acta, 46, 681-692.
  • NORDSTROM, D.K. & BALL, J.W. 1986. The geochemical behaviour of aluminum in acidified surface waters. Science, 232, 54-56.
  • NORDSTROM, D.K. & MAY, H.M. 1996. Aqueous equilibrium data for mononuclear aluminum species. In: G. SPOSITO (Ed.), The Environmental Chemistry of Aluminum. pp. 39-80. CRC Press, Inc.; Boca Raton, Florida. [2nd ed.]
  • PAČES, T. 1973. Steady state kinetics and equilibrium between ground water and granitic rock. Geochimica et Cosmochimica Acta, 37, 2641-2663.
  • — 1978. Reversible control of aqueous aluminum and silica during the irreversible evolution of natural waters. Geochimica et Cosmochimica Acta, 42, 1487-1493.
  • PARKHURST, D.L. & APPELO, C.A.J. 1999. User’s guide to PHREEQC (version 2) - A computer model for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, WRI Report 99-4259. 326 pp.
  • SCANLON, T.M., RAFFENSPERGER, J.P. & HORNBERGER, G.M. 2001. Modeling transport of dissolved silica in a forested headwater catchment: Implications for defining the hydrochemical response of observed flow pathways. Water Resources Research, 37, 1071-1082.
  • SCHNEIDER, C., DOUCET, F., STREKOPYTOV, S. & EXLEY, C. 2004. The solubility of an hydroxyaluminosilicate. Polyhedron, 23, 3185-3191.
  • SU, C. & HARSH, J.B. 1998. Dissolution of allophane as a thermodynamically unstable solid in the presence of boehmite at elevated temperatures and equilibrium vapor pressures. Soil Science, 163 (4), 299-312.
  • SVARCEV, S.L. 1998. Hydrogeochemistry of the supergene zone, pp. 1-366. Nedra; Moscow. [In Russian]
  • TEISSEYRE, A.K. 1966. On the Lower Carboniferous of the Intrasudetic Basin: paleocurrents and the provenance of clastics. Acta Geologica Polonica, 16 (4), 477-517. [In Polish with English summary]
  • — 1972. On regional kaolinization of clastic Middle Visean deposits in the northern part of the Intra-Sudetic Basin. Przegląd Geologiczny, 20 (4) 191-193. [In Polish with English summary]
  • — 1975. Sedimentology and paleogeography of the Kulm alluvial fans in the Western Intrasudetic Basin (Central Sudetes, SW Poland). Geologia Sudetica, 9 (2), 89 pp. [In Polish with English summary]
  • WADA, K., 1989. Allophane and imogolite. In: J.B. DIXON & S.B. WEED (Eds), Minerals in Soil Environments (2nd edition), SSSA Book Series, 1, 1051-1087.
  • WELS, C., CORNETT, R.J. & LAZERTE, B.D. 1991. Hydrograph separation: a comparison of geochemical and isotopic tracers. Journal of Hydrology, 122, 253-274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1231-5243
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.