PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of genetic structures in a norway spruce (Picea abies Karst.) population colonizing the abandoned agricultural land : a look back and a look ahead

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in the genetic variation and spatial genetic structures were modelled in a Norway spruce (Picea abies Karst.) population colonizing abandoned pasture area of 100 hectares at the locality Prislopy, Pol'ana Mts. (Carpathians, Central Slovakia, 48[degrees] 38[minutes] N, 19[degrees] 25[minutes] E, approx. 900 m a.s.l.). The development in the past was reconstructed on the basis of a series of historical aerial photographs, reflecting primarily the population growth and the colonization process. The future development was predicted using the individual-tree model SIBYLA developed by Fabrika (2003), whereby it reflects the future density-dependent mortality. No significant changes of the allelic richness or gene diversity were observed during the whole period of modelling (1956 to 2065). Fixation index (reflecting the degree of inbreeding) has steadily increased since the initial stage up to the present, and is predicted to increase further, indicating the accumulation of inbres individuals due to the formation of spatially continuous kin groups. This assumption is supported by the development of spatial genetic structures (non-random distribution of genotypes). The distograms of the number of alleles in common (NAC) showed that spatially proximate individuals share significantly more alleles than expected under random distribution of genotypes. Spatial genetic structures were formed at the very early stage of colonization, have persisted until the present and are predicted to be even enhanced in the future. Isolation by distance due to a limited seed dispersal, strong fertility variation and facilitation of seedling establishment in the vicinity of early colonizers are proposed as explanation. The results indicate that Norway spruce, although being the component of many climax forest communities, is capable under certain circumstances to behave as a very efficient pioneer. The species disperses enough seeds on medium distances to reach suitable sites within open areas and establish as seedlings, whereas a strong seed dispersal at short distances and modification of environment near the early colonizers allow the extension of kin groups and gradual occupation of the whole available space.
Twórcy
  • Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, SK-960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, SK-960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, SK-960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, SK-960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, SK-960 53 Zvolen, Slovakia, gomory@vsld.tuzvo.sk
Bibliografia
  • Adams W. T., Burczyk J. 2000 – Magnitude and implications of gene flow in gene conservation reserves. (In: Forest Conservation Genetics, Principles and Practice, Eds. A. Young, D. Boshier, T.) – CSIRO Publishing, Colingwood & CABI Publishing, Oxon, pp. 215–224.
  • Berg E. E., Hamrick J. L. 1995 – Fine-scale genetic structure of a Turkey oak forest – Evolution, 49: 110–120.
  • Cespedes M., Gutierrez M. V., Holbrook N. M., Ro cha O. J. 2003 – Restoration of genetic diversity in the dry forest tree Swietenia macrophylla (Meliaceae) after pasture abandonment in Costa Rica – Mol. Ecol. 12: 3201–3212.
  • Chung M. Y., Kim K. J., Pak J. H., Park C. W., Sun B. Y., Myers E. R., Chung M. G. 2005 – Inferring establishment histories in populations of Quercus dentata (Fagaceae) from the analysis of spatial genetic structure Plant Syst. Evol. 250: 231–242.
  • Comps B., Gömöry D., Letouzey J., Thiébaut B., Petit R. J. 2001 – Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech – Genetics, 157: 389–397.
  • Cornuet J. M., Luikart G. 1996 – Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data – Genetics, 144: 2001–2014.
  • Degen B., Gregorius H.-R., Scholz F. 1996 – ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations – Silvae Genet. 45: 323–329.
  • Degen B., Petit R., Kremer A. 2001 – SGS - Spatial Genetic Software: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations - J. Hered. 92: 447–448.
  • Epperson B. K., Li T. Q. 1996 – Measurement of genetic structure within populations using Moran’s spatial autocorrelation statistics - Proc. Natl. Acad. Sci. U.S.A. 93: 10528–10532.
  • Escudero A., Iriondo J. M., Torres M. E. 2003 – Spatial analysis of genetic diversity as a tool for plant conservation – Biol. Cons. 113: 351–365.
  • Fabrika M. 2003 – Rastový simulátor SIBYLA a moñnosti jeho uplatnenia pri obhospodarovaní lesa [Growth simulator SIBYLA and the possibilities of its applications in forest management] – Les. čas. – Forestry J. 49: 135–151 (in Slovak)
  • Gömöry D. 1995 – Simulation of the genetic structure and reproduction in plant populations - short note For. Genet. 2: 59–63.
  • Gömöry D. 2004 – Mutual links of demographic and genetic processes in a wild cherry population during the colonization of abandoned agricultural land – Biológia, 59: 493–500.
  • Gömöry D., Schmidtová J. 2004 – Simulation study of the development of spatial genetic structure at the local scale during the colonization process. I. Spatial autocorrelations - Acta Fac. For. Zvolen 46: 37–50.
  • Gömöry D., Schmidtová J. 2005 – Simulation study of the development of spatial genetic structure at the local scale during the colonization process. II. Relatedness – Fol. Oecol. 31: 73–82.
  • Goudet J. 2001 – FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html.
  • Hardy O. J., Vekemans X. 1999 – Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetic models – Heredity, 83: 145–154.
  • Hasenauer H. 1994 – Ein Einzelbaumsimulator für ungleichaltrige Fichten-Kiefern- und Buchen-Fichtenmischbestände – Forstliche Schriftenreihe der Universität für Bodenkultur, Wien 8: 1–152.
  • Kimura M., Crow J. F., 1964 – The number of alleles that can be maintained in a finite population – Genetics, 49: 725–738.
  • Knowles P. 1991 – Spatial genetic-structure within 2 natural stands of black spruce (Picea mariana (Mill.) B.S.P. – Silvae Genet. 40: 13–19.
  • Križová E. 1995 – Sekundárna sukcesia na opustených lúkach a pastviskách v Hrochotskej doline [Secondary succession on abandoned meadows and pastures of the Hrochotská valley] (In: Sekundárna sukcesia. Eds. E. Križová, K. Ujházy) – Lesoprojekt, Zvolen, pp. 95–103 (in Slovak).
  • Lagercrantz U., Ryman N. 1990 – Genetic structure of Norway spruce (Picea abies) - concordance of morphological and allozymic variation – Evolution, 44: 38–53.
  • Lagercrantz U., Ryman N., Ståhl G. 1988 - Protein loci in diploid tissue of Norway spruce (Picea abies K.): description and interpretation of electrophoretic variability patterns - Hereditas, 108: 149–158.
  • Leonardi S., Raddi S., Borghetti M. 1996 – Spatial autocorrelation of allozyme traits in a Norway spruce (Picea abies) population - Can. J. For. Res. 26: 63–71.
  • Muona O., Yazdani R., Lindqvist G. 1987 - Analysis of linkage in Picea abies – Heredita, 106: 31–36.
  • Petit R. J., El Mousadik A., Pons O. 1998 - Identifying populations for conservation on the basis of genetic markers – Cons. Biol. 12: 844–855.
  • Prach K., Lepš J., Michálek J. 1996 – Establishment of Picea abies seedlings in a Central European mountain grassland: An experimental study – J. Veg. Sci. 7: 681–684.
  • Pretzsch H. 1992 – Konzeption und Konstruktion der Wuchsmodelle für Rein- und Mischbestände - Forstliche Forschungsberichte Münche, 115: 1–332.
  • Pukkala T., Miina J. 1997 – A method for stochastic multiobjective optimization of stand management – For. Ecol. Manage. 98: 189–203.
  • Quinn G. P., Keough M. J. 2002 – Experimental Design and Data Analysis for Biologists - Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, 537 pp.
  • Raymond M., Rousset F. 1995 – An exact test of population differentiation – Evolution 49: 1280–1283.
  • Schiller G., Ne’eman G., Korol L. 1997 Post-fire vegetation dynamics in a native Pinus halepensis Mill. forest on Mt. Carmel, Israel – Isr. J. Plant Sci. 45: 297–308.
  • Ujházy K. 2003 – Sekundárna sukcesia na opustených lúkach a pasienkoch Poµany [Secondary succession on abandoned meadows and pastures of the Poµana Mts.]– Technická univerzita vo Zvolene, Zvolen, 104 pp. (in Slovak).
  • Wang Z. F., Wang B. S., Li M. G., Zhang J. L., 2000 – Molecular ecology of lower subtropical species, Schima superba and Castanopsis chinensis in three succession series communities – Acta Bot. Sin. 42: 1082–1088.
  • Wright S. 1946 – Isolation by distance under diverse systems of mating – Genetics, 31: 39–59.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1231-5211
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.