PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical analysis of vacuum freeze drying of biomaterials at contact-radiant-microwave heating

Identyfikatory
Warianty tytułu
PL
Analiiza teoretyczna suszenia sublimacyjnego biomateriałów z ogrzewaniem kontaktowo-radiacyjno-mikrofalowym
Języki publikacji
EN
Abstrakty
EN
In the numerical modelling of the vacuum freeze drying of biomaterials (fodder yeast, lactose, milk biopreparation and sulphamerazine) at combined contact-radiant-microwave heating, the explicit MacCormack finite differences method was employed for solving two-region parabolic plane moving boundary problem (PPLMBP) with heat generation in both frozen and dried regions and unknown a priori sublimation temperature T[s](t) at moving ice sublimation front. Simulation of vacuum freeze drying process of biomaterials at combined contact-radiant-microwave heating was made, and additionally, the influence both steady capacity and relaxation time of internal heat source capacity has been discussed. A method of experimental determination of the [mi[i]] and [tau[s(i)]] parameters was also presented.
PL
W modelowaniu matematycznym suszenia sublimacyjnego biomateriałów (drożdże paszowe, laktoza, biopreparat mleczarski, sulfamerazyna) z ogrzewaniem kombinowanym kontaktowo-radiacyjno-mikro-falowym zaproponowano jawną metodę różnic skończonych MacCormacka do rozwiązywania parabolicznych problemów płaskiej ruchomej granicy z generacją ciepła w dwóch obszarach: zamrożonym i wysuszonym oraz nieznaną a priori temperaturą ruchomego frontu sublimacji lodu Ts(t). Przeprowadzono analizę wpływu ustalonej wydajności wewnętrznego źródła ciepła oraz czasu relaksacji wydajności tego źródła na proces suszenia. Przedstawiono także sposób wyznaczania na drodze pomiarowej wartości parametrów mi[i] and tau[s[i]].
Rocznik
Strony
505--525
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department of Chemical Engineering and Environmental Protection Processes Technical University of Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • [1] CattaneoC., Sulla Conduzioae del Colore, ATTI DEL SEMINAR, 1948, MAT. FIS. UNIV. MODENA3, 3-21.
  • [2] Vick B., Ozisik M.N., Growth and Decay of a Thermal Pulse Predicted by the HyperbolicHeat Conduction Equation, ASME J. HEAT TRANSFER, 1983, 105, 902.
  • [3] Ozisik M.N., Vick B., Propagation and Reflection of Thermal Waves in a Finite Medium, INT. J. HEAT MASS TRANSFER, 1984, 27, 1845.
  • [4] Kaminski W., Hyperbolic Heat Conduction Equation for Materials with a Non-homogeneous Inner Structure, ASME J. HEAT TRANSFER, 1990, 112, 555.
  • [5] Malinowski L., Thermal Wave Propagation Within a Medium With the Inert Heat Source, WARME- UND STOFFUBERTRAGUNG, 1988, 22, 185.
  • [6] Malinowski L., Relaxation Equation of Heat Conduction and Generation - an Analytical Solution by Laplace Transforms Method, WARME- UND STOFFIIBERTRAGUNG, 1994, 29, 265.
  • [7] TZOU D.Y., An Engineering Assessment to the Relaxation Time in Thermal Wave Propagation, INT. J. HEAT MASS TRANSFER, 1993, 36, 1845.
  • [8] Nastaj J., Moving Boundary Problems in the Vacuum and Vacuum Freeze Drying (IN POLISH), D.SC. THESIS, 1997, TECHNICAL UNIVERSITY OF SZCZECIN, SZCZECIN.
  • [9] Nastaj J., Application of the Pulse Method of a PlaneHeat source for determination of Thermophysical and RelaxationProperties of the Disordered Porous Materials, INT. COMM. HEAT MASS TRANSFER, 1999, 26, 985.
  • [10] nastaj J., A Relaxation Model of Vacuum Freeze Drying of the Disordered Porous Materials at Radiative-Microwave Heating, PROC. 12TH INT. DRYING SYMP. IDS'2000, 2000, NOORDWIJKERHOUT, THE NETHERLANDS, PAPER NO. 297, ELSEVIER SCIENCE, AMSTERDAM.
  • [11] Nastaj J., Hyperbolic Moving Boundary Problem with Internal Heat Generation in Vacuum Freeze-Drying, PROCEEDINGS OF THE FIRST EUROPEAN CONGRESS ON CHEMICAL ENGINEERING, 1997, FLORENCE, ITALY, MAY 1997, VOL. 2, 1183.
  • [12] Nastaj J., PARABOLIC Problem of Moving Boundary with Relaxation of Internal Heat Source Capacity in Vacuum Freeze Drying, INT. COMM. HEAT MASS TRANSFER, 2001, 28, 8, 1079.
  • [13] Ma Y.H., peltre R.P., Freeze Dehydration by Microwave Energy: Part I. Theoretical Investigation: Part II. Experimental Study, AICHE JOURNAL, 1975, 21, 335.
  • [14] Schiffmann R.F., Microwave and Dielectric Drying, [IN:] A.S. MUJUMDAR (ED.), Handbook of Industrial Drying, CHAP. 10, 1987, HEMISPHERE PUBLISHING CORPORATION, WASHINGTON.
  • [15] Dolan J.P., Use of Volumetric Heating to Improve Heat Transfer During Vial Freeze-Drying, PH.D. THESIS, 1998, VIRGINIA STATE UNIVERSITY, BLACKSBURG, VIRGINIA.
  • [16] Adams G.D., Freeze-Drying of Biological Materials, DRYING TECHNOLOGY, 1991, 9, 891.
  • [17] Sadikoglu H., Liapis A.I., Mathematical Modelling of the Primary and Secondary Stages of Bulk Solution Freeze-Drying in Trays, DRYING TECHNOLOGY, 1997, 15, 791.
  • [18] lombrana J.I., izkara J., Zuazo I., Drying Rate and Moisture Diffusivity Analysis of Freeze-Dried Products under Microwave Heating Power Application, PROC. OF THE 12TH INTERN. DRYING SYMP. IDS2000, PAPER NO.347.
  • [19] Anderson D.A., Tannehil J.C., Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, 1984, MCGRAW-HILL, NEW YORK.
  • [20] Wolff E., H. Gilbert, Vacuum Freeze-Drying Kinetics and Modelling of a Liquid I a Vial, CHEM. ENG. PROCESS., 1989, 25, 153.
  • [21] Goldblith S.A., Rey L., ROTHMAYR W.W., Freeze-drying and Advanced Food Technology, 1975, ACADEMIC PRESS, LONDON.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1139-4879
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.