PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationship between Cognetia sphagnetorum Vejd. (Oligochaeta, Enchytraeidae) and soil microorganisms : a microcosm experiment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in densities of microorganisms were analysed in Cognetia sphagnetorum Vejd. Cultures at normal and low numbers of microorganisms. Different abundance of microorganisms was achieved by using captan and oxytetracycline. During 14 weeks, the following variables were measured: total numbers of bacteria and fungi by plate method, the biomass of microorganisms by PLFA method, content of ions, and activity of acid and alkaline phosphatase and urease. Numbers of enchytraeids increased with numbers of fungi. The presence of animals reduced the activity of soil enzymes and the content of Cl, SO4, Na, Ca and Mg ions in soil leacheates. An increase in the content of N-NO3 and N-NH4 was not significant.
Rocznik
Strony
215--223
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
  • Centre for Ecological Research, Polish Academy of Sciences, Dziekanów Leśny, 05-092 Łomianki, Poland
  • Department of Microbiology, Silesian University, Jagiellońska 28 Katowice, Poland
Bibliografia
  • 1. Abrahamsen G., 1990 – Influence of Cognettia sphagnetorum (Oligochaeta, Enchytraeidae) on nitrogen mineralization in homogenized mor humus. – Biol. Fert. Soils 9: 159–162.
  • 2. Anderson J. M., Ineson, P., Huish, S. A. - 1983. Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. – Soil Biol. Biochem. 15: 463–467.
  • 3. Beare M. H., Parmelee R. W., Hendrix P. F., Cheng W. 1992 – Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. – Ecological Monographs 62: 569–591.
  • 4. Bond W. J., 1994. – Keystone species. (In: Biodiversity and ecosystem function. Eds: Schulze E. D., Mooney H. A.) – Springer Verlag, Berlin. pp. 253.
  • 5. Briones M. J. I., Carreira J., Ineson P., 1998. – Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment. Appl Soil Ecol 9: 289–294.
  • 6. Coleman, D. C., Reid, C. P. P., Cole, C. V., 1983. – Biological strategies of nutrient cycling in soil systems. – Adv. Ecol. Res. 13: 1–55.
  • 7. Didden, W., 1993. – Ecology of terrestrial Enchytraeidae. - Pedobiologia 37: 2–29.
  • 8. Didden, W., 1995. – The effect of nitrogen deposition on enchytraeid-mediated decomposition and mobilization – a laboratory experiment. - Acta Zool. Fennica 196: 60–64.
  • 9. Frostegård Å., Bååth E.1996 – The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. – Biol. Fertil. Soils 22: 59–65.
  • 10. Frostegård Å., Tunlid A., Bååth E. 1991 - Microbial biomass measured as total lipid phosphate in soils of different organic content. - J. Microbiol. Methods 14: 151–163.
  • 11. Hanlon, R. D. G., 1981 – Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. – Oikos 36: 362–367.
  • 12. Hedlund, K., Augustsson, A., 1995. – Effects of enchytraeid grazing on fungal growth and respiration. – Soil Biol. Biochem. 27: 905–909.
  • 13. Huhta, V., Persson, T., Setälä, H., 1998. - Functional implications of soil fauna diversity in boreal forests. – Appl. Soil Ecol. 10: 277–288.
  • 14. Komulainen M., Mikola J., 1995. – Soil processes as influenced by heavy metals and the composition of soil fauna. – Jour. Appl. Ecol. 32: 234–241.
  • 15. Koutika L. S., Didden W. A. M., Mariniss en J. C. Y., 2001. – Soil organic matter distribution as influenced by enchytraeid and eartworm activity. – Biol. Fertil. Soils 33: 294–300.
  • 16. Liiri M., Setälä, H., Haimi J., Pennanen T., Fritze H., 2001. – Influence of Cognettia sphagnetorum (Enchytraeidae) on birch growth and microbial activity, composition and biomass in soil with or without wood ash. – Biol. Fertil. Soils 34: 185–195.
  • 17. Laaks o J., Setälä, H., 1999. – Sensitivity of primary production to changes in the architecture of belowground food webs. – Oikos 87: 57–64.
  • 18. Lawler S. P., Morin P. J., 1993 – Food web architecture and population dynamics in laboratory microcosms of protist. – Am. Nat. 141: 675–686.
  • 19. Mikola J., Setälä H., 1999. – Interplay of omnivory, energy channels and C availability in a microbial-based soil food web. – Biol. Fertil. Soils 28: 212–218.
  • 20. Nieminen, J. K., Setälä, H., 2001. – Bacterial and microbial-feeders modify the performance of a decomposer fungus. – Soil Biol. Biochem. 33: 1703–1712.
  • 21. Nowak, E., 2001. – Enchytraeid communities in succesional habitats (from meadow to forest). – Pedobiologia 45: 497–508.
  • 22. Nowak E., Piotrowska-Seget Z., Chmielewski K., 2005. – Response of enchytraeid community (Oligochaeta, Enchytraeidae) to manipulation of microbial biomass. - Pol. J. Ecol. 53: 53–63.
  • 23. Standen, V., Latter, P. M., 1977. – Distribution of a population of Cognettia sphagnetorum (Enchytraeidae) in relation to microhabitats in a blanket bog. – J. Animal Ecol. 42: 213–229.
  • 24. Sulkava P., Huhta V., Laakso J., 1996 - Impact of soil faunal structure on decomposition and N-mineralisation in relation to temperature and moisture in forest soil. – Pedobiologia 40: 505–513.
  • 25. Williams, B. L., Griffiths, B. S., 1989. – Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms. – Soil Biol. Biochem. 21: 183–188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1042-4227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.