PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Forest litter bacteria : relationships with fungi, microfauna, and litter composition over a winter-spring period

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents data on temporal and spatial variability and ecological interactions of bacteria in a Scottish woodland over a winter-spring period (January-April). The study sites covered an area of 1 ha and a range of woodland habitats formed by beech (Fagus silvatica), birch (Betula pendula x pubescens) and oak (Quercus petraea), as well as (one site) a clearance site covered with grass (predominantly Holcus lanatus). Subsamples of fresh litter were fragmented for 60 s in a domestic food processor and were subsequently used to estimate the abundance of bacteria by counting under a fluorescent microscope. The preparation of bacterial slides involved staining with DTAF following extraction in phosphate buffer. The data on protozoa, fungi and microinvertebrates were available from parallel research and were obtained using standard methods. Numbers of bacteria appeared to be lower in sites dominated by beech. The highest average bacterial abundance (9.07x108 cells g-1 dry litter) was registered in January, and then gradually declined till March, when the lowest (7.37x108 cells g-1 dry litter) value was found, before rising again in April. The only significant difference revealed by one-way ANOVA was between January and March results. Both date and site effects were found to be significant by two-way ANOVA, but the date site . interaction was not significant. A number of significant relationships were registered by stepwise regression analysis, ANCOVA, and correlation analysis. In stepwise regression analysis, the most important predictor for bacterial density was litter moisture content (all months but March). Further significant relationships were revealed with the abundance of fungi, nematodes, and microarthropods, and forest litter fractions of moss, needles, beech seeds and birch leaves. ANCOVA confirmed the importance of interactions with litter composition and moisture content, and the abundance of fungi and microarthropods, and revealed a relationship with the abundance of ciliates. Correlation analysis for separate months revealed various relationships with forest litter composition (including positive . with forest litter fractions of oak leaves, grass, roots, birch leaves, and negative ones . with forest litter fractions of ferns and seeds), and the abundance of other microbiota, including positive with Folsomia candida (Insecta, Apterygota, Collembola), fungi, plant and microbial feeding nematodes, tardigrades and enchytraeids, positive and negative with ciliates, and negative with predatory nematodes. Most of these relationships, plus a further correlation with the abundance of amoebae, were also revealed for the combined dataset. It should be noted that some of these interactions (e.g. with % grass, % roots, the density of Folsomia candida) were only revealed by correlation analysis, and may therefore be judged as less important than relationships registered by all statistical methods applied. The results of this study highlighted the complexity of multivariate interactions of bacteria in forest litter.
Rocznik
Strony
383--394
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
autor
  • School of Ocean Sciences, University of Wales Banger, Marine Science Laboratories, Menai Bridge, Anglesey LL595AB
autor
  • SIMBIOS, Schools of Science and Engineering and Computing, University of Abertay Dundee Bell Street, Dundee DD1 1HG, Scotland, UK
autor
  • SIMBIOS, Schools of Science and Engineering and Computing, University of Abertay Dundee Bell Street, Dundee DD1 1HG, Scotland, UK
autor
  • SIMBIOS, Schools of Science and Engineering and Computing, University of Abertay Dundee Bell Street, Dundee DD1 1HG, Scotland, UK
  • SIMBIOS, Schools of Science and Engineering and Computing, University of Abertay Dundee Bell Street, Dundee DD1 1HG, Scotland, UK
autor
  • Caledonian Mycological Enterprises Crelah, 26 Blinkbonny Avenue, Edinburgh EH4 3HU, UK
autor
  • Plant-Soil Interface Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
  • Plant-Soil Interface Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
  • Plant-Soil Interface Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
autor
  • SIMBIOS, Schools of Science and Engineering and Computing, University of Abertay Dundee Bell Street, Dundee DD1 1HG, Scotland, UK
Bibliografia
  • 1. Acea M. J., Alexander M. 1988 – Growth and Survival of Bacteria Introduced into Carbon-Amended Soil – Soil Biology & Biochemistry, 20: 703–709.
  • 2. Aitchison C. W. 1983 – Low-Temperature and Preferred Feeding by Winter-Active Collembola (Insecta, Apterygota) – Pedobiologia, 25: 27–36.
  • 3. Alef K., Nannipieri P. 1995 – Methods in applied soil microbiology and biochemistry - Academic Press Limited, London.
  • 4. Alekhina L. K., Polyanskaya L. M., Dobrovol’skaya T. G. 2001 – Population dynamics of microorganisms in the soils of the Central Forest Reserve (model experiments) - Eurasian Soil Science, 34: 88–91.
  • 5. Bamforth S. S. 1995 – Isolation and counting of protozoa (In: Methods in applied soil microbiology and biochemistry, Eds. K. Alef, P. Nannipieri) – Academic Press, London, pp. 174–180.
  • 6. Bezginova T., Thompson J., Staines H., Salmond R., Krivtsov V., Garside A., Griffiths B., Liddell K., Watling R., Palfreyman J. 2001 – Interrelations between leaf litter composition and nematodes in the ‘Heron Wood Reserve’, Peebleshire, Scotland – Proceeding of IV Int. Nematol. Symposium, pp. 62–63.
  • 7. Block W., Webb N. R., Coulson S., Hodkinson I. D., Worland M. R. 1994 - Thermal Adaptation in the Arctic Collembolan Onychirus arcticus (Tullberg) – Journal of Insect Physiology, 40: 715–722.
  • 8. Brown J., Miller P. C., Tieszey L. L., Bunnel F. L. 1980 – An arctic ecosystem. The coastal tundra at Barrow, Alaska – Academic Press, Stroudsburg, 571 pp.
  • 9. Castrillo L. A., Lee R. E., Wyman J. A., Lee M. R., Rutherford S. T. 2001 – Field persistence of ice-nucleating bacteria in overwintering Colorado potato beetles – Biological Control, 21: 11–18.
  • 10. Clarholm M. 1981 – Protozoan grazing of bacteria in soil – impact and importance – Microbial Ecology, 7: 343–350.
  • 11. Clein J. S, Schimel J. P 1995 – Microbial Activity of Tundra and Taiga Soils at Subzero Temperatures – Soil Biology & Biochemistry, 27: 1231–1234.
  • 12. Dilly O., Bartsch S., Rosenbrock P., Buscot F. Munch J. C. 2001 – Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest – Soil Biology and Biochemistry, 33: 921–930.
  • 13. Elliott W. M., Elliott N. B., Wyman R. L. 1993 – Relative effect of litter and forest type on rate of decomposition – American Midland Naturalis, 129: 87–95.
  • 14. Evens G. O. 1992 – Principles of Acarology, CAB International.
  • 15. Frouz J., Keplin B., Pizl V., Tajovsky K., Stary J., Lukesova A., Novakova A., Balik V., Hanel L., Materna J., Duker C., Chalupsky J., Rusek J., Heinkele T. 2001 – Soil biota and upper soil layer development in two contrasting post-mining chronosequences – Ecological Engineering, 17: 275–284.
  • 16. Golovchenko A. V., Polyanskaya L. M. 1996 – Seasonal dynamics of population and biomass of microorganisms in the soil profile - Eurasian Soil Science, 29: 1145–1150.
  • 17. Griffiths B. S., Bardgett R. D. 1997 – Interactions between microbe-feeding invertebrates and soil microorganisms (In: Modern soil microbiology, Eds. J. D. van Elsas, J. T. Trevors, E. M. H. Wellington) – Marcel Dekker, New York, pp. 165–182.
  • 18. Griffiths B. S., Ritz K., Wheatley R., Kuan H. L., Boag B., Christensen S., Ekelund F., Sorensen S. J., Muller S., Bloem J. 2001 – An examination of the biodiversity- ecosystem function relationship in arable soil microbial communities – Soil Biology and Biochemistry, 33: 1713–1722.
  • 19. Heynen C. E., Vanelsas J. D., Kuikman P. J., Vanveen J. A. 1988 – Dynamics of Rhizobium-Leguminosarum Biovar Trifolii Introduced into Soil – the Effect of Bentonite Clay on Predation by Protozoa – Soil Biology & Biochemistry, 20: 483–488.
  • 20. Hodkinson I. D., Webb N. R., Bale J. S., Block W., Coulson S. J., Strathdee A. T. 1998 – Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on spitsbergen – Arctic and Alpine Research, 30: 306–313.
  • 21. Hopkin S. P. 1997 – Biology of Springtails, Insecta: Collembola – Oxford University Press, Oxford.
  • 22. Hunt H. W., Coleman D. C., Ingham E. R., Ingham R. E., Eliott E. T., Moore J. C., Rose C. L., Reid C. P. P., Morley C. R. 1987 – The detrital foodweb in a shortgrass prairie – Biology and Fertility of Soils, 3: 57–68.
  • 23. Itoh R. 1994 – Life cycle of the collembolan Sminthurus arborealis Itoh, a species active in winter on trees – Acta Zoologica Fennica, 195: 87–88.
  • 24. Janssen M. P. M., Heijmans G. 1998 – Dynamics and stratification of protozoa in the organic layer of a Scots pine forest – Biology and Fertility of Soils, 26: 285–292.
  • 25. Kennedy A. D. 1993 – Water as a Limiting Factor in the Antarctic Terrestrial Environment - a Biogeographical Synthesis – Arctic and Alpine Research, 25: 308–315.
  • 26. Kennedy A. D. 1999 – Microhabitats occupied by terrestrial arthropods in the Stillwell Hills, Kemp Land, East Antarctica – Antarctic Science, 11: 27–37.
  • 27. Kopeszki H., Trockner V. 1994 – Effects of Skiing on the Collembolan Fauna of an Alpine Meadow in Grodental (South Tyrol) – Zoologischer Anzeiger, 233: 221–239.
  • 28. Krivtsov V., Garside A., Thompson J., Bezginova T., Salmond R ., Liddell K., Griffiths B., Staines H., Watling R ., Palfreyman J. 2001a – Interrelations between soil nematodes, bacteria, fungi and protozoa in the ‘Dawyck cryptogamic sanctuary’ in winter – Russian Journal of Nematology, 9: 150–151.
  • 29. Krivtsov V., Liddell K., Garside A., Bezginova T., Salmond R ., Thompson J., Griffiths B., Staines H. J., Watling R., Brendler A., Palfreyman J. W. 2001b – Report on a study of biological interactions in soil – Proceeding of Third European Ecological Modelling Conference, pp. 22.
  • 30. Krivtsov V., Liddell K., Salmond R., Garside A., Thompson J., Bezginova T., Griffiths B., Staines H. J., Watling R., Palfreyman J. W. 2002 – Analysis of microbial interactions in forest soil (In: Information technologies application to problems of biodiversity and dynamics of ecosystems in north Eurasia Eds. V. K. Shumny, N. A. Kolchanov, A. M. Fedotov) – IC and G, Novosibirsk, pp. 322–331.
  • 31. Krivtsov V., Liddell K., Bezginova T., Salmond R., Garside A., Thompson J., Palfreyman J. W., Staines H. J., Watling R., Brendler A., Griffiths B. 2003a – Ecological interactions of heterotrophic flagellates, ciliates and naked amoebae in forest litter of the Dawyck Cryptogamic Sanctuary (Scotland, UK) – European Journal of Protistology, 39: 183–98.
  • 32. Krivtsov V., Liddell K., Garside A., Bezginova T., Salmond R., Thompson J., Griffiths B., Staines H. J., Watling R., Brendler A., Palfreyman J. W. 2003b – Some aspects of complex interactions involving soil mesofauna: analysis of the results from a Scottish woodland – Ecological Modelling, 170: 441–452.
  • 33. Krivtsov V., Watling R., Walker S. J. J., Knott D., Palfreyman J. W. Staines H. J. 2003c – Analysis of fungal fruiting patterns at the Dawyck Botanic Garden – Ecological Modelling, 170: 393–406.
  • 34. Krivtsov V., Griffiths B., Salmond R., Liddell K., Garside A., Bezginova T., Thompson J., Staines H., Watling R., Palfreyman J. 2004a – Some aspects of interrelations between fungi and other biota in forest soil – Mycological Research, 108 (8): 933–946.
  • 35. Krivtsov V., Walker S. J. J., Burt-Smith G., Staines H., Watling R., Garside A. 2004b – Integrative analysis of ecological patterns in an untended temperate woodland utilising standard and customised software - Environmental Modelling and Software, 19: 325–335.
  • 36. Kshattriya S., Sharma G. D., Mishra R. R. 1994 – Fungal Succession and Microbes on Leaf Litters in 2 Degraded Tropical Forests of Northeast India – Pedobiologia, 38: 125–137.
  • 37. Kurihara Y., Kikkawa J. 1986 – Trophic relations of decomposers (In: Community ecology: pattern and process, Eds. J. Kikkawa, D. J. Anderson) – Blackwell Scientific Publications, Melbourne, pp. 126–160.
  • 38. Lavy D., Verhoef H. A. 1996 – Spatiotemporal variation in body composition and cold tolerance of soil arthropods – Pedobiologia, 40: 529–540.
  • 39. Ley R. E., Schmidt S. K. 2002 – Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils – Soil Biology and Biochemistry, 34: 989–995.
  • 40. Lipson D. A., Schmidt S. K., Monson R. K. 1999 – Links between microbial population dynamics and nitrogen availability in an alpine ecosystem – Ecology, 80 (5): 1623–1631.
  • 41. Mikola J., Sulkava P. 2001 – Responses of microbial-feeding nematodes to organic matter distribution and predation in experimental soil habitat – Soil Biology and Biochemistry, 33: 811–817.
  • 42. Moller J., Miller M., Kjoller A. 1999 – Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality – Soil Biology and Biochemistry, 31: 367–374.
  • 43. Ohtonen R., Munson A., Brand D. 1992 - Soil microbial community response to silvicultural intervention in coniferous plantation ecosystems – Ecological Applications, 2: 363–375.
  • 44. Okoh A. I., Babalola G. O., Olaniran A. O. 2000 – Aerobic heterotrophic bacterial and fungal communities in the topsoil of Omo Biosphere Reserve in southwestern Nigeria – Biotropica, 32: 208–212.
  • 45. Okoh I. A., Badejo M. A., Nathaniel I. T., Tian G. 1999 – Studies on the bacteria, fungi and springtails (Collembola) of an agroforestry arboretum in Nigeria – Pedobiologia, 43: 18–27.
  • 46. Olear H. A., Seastedt T. R. 1994 – Landscape Patterns of Litter Decomposition in Alpine Tundra – Oecologia, 99: 95–101.
  • 47. Panicker G., Aislabie J., Saul D., Bej A. K. 2002 – Cold tolerance of Pseudomonas sp. 30-3 isolated from oil-contaminated soil, Antarctica – Polar Biology 25: 5–11.
  • 48. Ponge J. F. 1991 – Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter – Plant and Soil, 138: 99–113.
  • 49. Robinson C. H. 2001 – Cold adaptation in Arctic and Antarctic fungi – New Phytologist, 151: 341–353.
  • 50. Rutherford P. M., Juma N. G. 1992 – Influence of texture on habitable pore-space and bacterial- protozoan populations in soil – Biology and Fertility of Soils, 12: 221–227.
  • 51. Ruzicka S., Norman M. D. P., Harris J. A. 1995 – Rapid ultrasonication method to determine ergosterol concentration in soil – Soil Biology and Biochemistry, 27: 1215–1217.
  • 52. Schönborn W. 1992 – Comparative studies on the production biology of protozoan communities in Fresh-Water and Soil Ecosystems - Archiv Fur Protistenkunde, 141: 187–214.
  • 53. Sambanis A., Fredrickson A. G. 1988 - Persistence of Bacteria in the Presence of Viable, Nonencysting, Bacterivorous Ciliates - Microbial Ecology, 16: 197–211.
  • 54. Sherr B. F., Sherr E. B., Berman T. 1983 – Grazing, Growth, and Ammonium Excretion Rates of a Heterotrophic Microflagellate Fed with 4 Species of Bacteria. Applied and Environmental - Microbiology, 45: 1196–1201.
  • 55. Sidorova I.I., Velikanov L. L. 1997 – The influence of higher Basidiomycetes on the myco- and mycrobiota structures in soils and litters of forest ecosystems. I. The influence of Basidiomycetes on quantity of fungi and bacteria – Mikologiya I Fitopatologiya, 31: 20–26.
  • 56. Southwood T. R. E. 1978 – Ecological methods: with particular reference to the study of insect populations – Chapman and Hall.
  • 57. Stout J. D. 1973 – The relationship between protozoan populations and biological activity in soils – Am. Zool. 13: 193–201.
  • 58. Thompson J., Brendler A., Staines H., Salmond R., Bezginova T., Palfreyman J., Krivtsov V. 2001 – Comparison of two methods for nematode extraction - Proceeding of IV Int. Nematol. Symposium, pp. 79–80.
  • 59. Walker S. J. J., Watling R., Staines H. J., Garside A., Knott D., Palfreyman J. W., Krivtsov V. 2002 – Modelling an untended Scottish forest ecosystem utilising standard and customised software (In: Integrated Assessment and Decision Support, Eds. A. E. Rizzoli, A. J. Jakkeman) – Proceedings of the first biennial meeting of the International Environmental Modelling and Software Society, 3: 473–778. Also available at http://www.iemss.org/iemss2002/proceedings/pdf/volume%20tre/411_krivtsov.pdf
  • 60. Zettel J., Zettel U., Suter C., Streich S., Egger B. 2002 – Winter feeding behaviour of Ceratophysella sigillata (Collembola: Hypogastruridae) and the significance of eversible vesicles for resource utilisation – Pedobiologia, 46: 404–413.
  • 61. Zhang Q., Zak J. C. 1998 – Potential physiological activities of fungi and bacteria in relation to plant litter decomposition along a gap size gradient in a natural subtropical forest - Microbial Ecology, 35: 172–179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1042-4135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.