PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie inaktywacji termicznej glukoamylazy z aspergillus niger

Autorzy
Identyfikatory
Warianty tytułu
EN
Thermal inactivation kinetics of aspergillus niger glucoamylase
Języki publikacji
PL
Abstrakty
PL
Inaktywację termiczną glukoamylazy z Aspergillus niger zaliczono do procesu o charakterze dwufazowym na podstawie analizy zależności logarytmu aktywności (szybkości reakcji) od czasu reakcji. Spośród pięciu zanalizowanych modeli matematycznych dwa o charakterze ogólnym prawidłowo odwzorowywały zmiany aktywności enzymu pod wpływem podwyższonej temperatury: model równoczesnej inaktywacji, zakładający występowanie dwóch form izoenzymatycznych oraz dwa modele zgodne z mechanizmem nieodwracalnej inaktywacji następczej, zakładające występowanie zależnych od temperatury pośrednich form enzymu o mniejszej aktywności. Wybór między trzema modelami oparto na analizie zależności wartości stałych równań kinetycznych od temperatury oraz analizie prawdopodobnego składu formy pośredniej enzymu.
EN
Aspergillus niger glucoamylase undergoes complex thermal inactivation phenomena, as revealed by the two-slope pattern of the enzyme logarithmic activity versus time curves. Two proposed general inactivation models are shown to fit enzyme inactivation data reasonably well. They are as follows: parallel isozyme model which assumes the presence of two different active forms of glucoamylase and two models of inactivation by a series mechanism, involves intermediate, temperature dependent and less active forms of the enzyme. Discrimination between these models was based on dependence of kinetic constants on temperature as well as the analysis of possible structure of the enzyme intermediate forms.
Słowa kluczowe
Rocznik
Strony
345--362
Opis fizyczny
Bibliogr. 53 poz., tab., rys.
Twórcy
autor
  • Instytut Inżynierii Chemicznej i Procesowej Politechniki Wrocławskiej
Bibliografia
  • [1] WEEMAES G, DE CORDT S., GOOSSENS K., LUDIKHUYZE L., HENDRICKX M„ HEREMANS K., TOBBACK P., High pressure, thermal and combined pressure-temperature stabilities of a-amylases. Biotechnol. Bioeng. 1996, 50 49-56.
  • [2] WEIJERS R.S., VAN'T RIET K., Enzyme stability in downstream processing. Part I. Enzyme inactivation, stability and stabilization. Biotechnol. Adv., 1992, 10, 237-249.
  • [3] MOZHAEV V.V., BEREZIN I.V., MARTINEK K., Application of high hydrostatic pressure for increasing activity and stability. CRC Crit. Rev. Biochem., 1988, 23, 235-281.
  • [4] LONGO M.A., COMBES D., J. Thermostability of modified enzymes: A detailed study. Chem. Tech. Biotechnol., 1999, 74, 25-32.
  • [5] HENLEY J.P., SADANA A., A mathematical analysis of enzyme stabilization by a series-type machanism: Influence of chemical modifiers, Biotechnol. Bioeng., 1984, 26, 959-969.
  • [6] CALVO M.V., PLON P.J., BALLESTEROS A., Effect of surfactants on activity and stability of native and chemically modified lipases A andBfrom Candida rugosa. Biocatal. Biotransf., 1996, 13, 271-285.
  • [7] DE CORDT S., HENDRICKX M., MAESMANS G, TOBBACK P., The influence of polyalcohols and carbohydrates on the thermostability of a-amylase. Biotechnol. Bioeng., 1994, 43, 107-114.
  • [8] GIANFREDA L., TOSCANO G., PIROZZI D., GRECO G. Jr., The effect of sorbitol on acid phosphatase deactivation. Biotechnol. Bioeng., 1991, 38, 1153-1158.
  • [9] BUSTO M.D., APANTEN R.K.O., ROBINSON D.S., Wu Z., CAEY R., HUGHES R.K., Kinetics of thermal inactivation of pea seed lipoxygenases and the effect of additives on their thermostability. Food Chem., 1999, 65,323-329.
  • [10] TAYLOR L.S., YORK P., WILLIAMS A.C., EDWARDS H.G.M., MEKTA V., JACKSON G.S., BADCOE I.G., CLARKE A.R., Sucrose reduces the efficiency of protein denaturation by a chaotropic agent, Biochim. Biophes. Acta., 1995,1253, 39-46.
  • [11] CHEN K.-C, WU J.-Y., Substrate protection of immobilized glucose isomerase, Biotechnol. Bioeng., 1987,30,817-824.
  • [12] YAMANE T., SIRIROTE P., SHIMIDZU S., Evaluation of half-life of immobilized enzyme during continuous reaction in bioreactors: A theoretical study, Biotechnol. Bioeng., 1987, 30, 963-969.
  • [13] SRINIVAS R., PANDA T., Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies, Bioproc. Engn., 1999, 21, 363-369.
  • [14] GANESH K., JOSHI J.B., SAW ANT S.B., Cellulose deactivation in a stirred reactor, Biochem. Eng. J, 2000, 4, 137-141.
  • [15] ILLANES A., ALTAMIRANO C, ZUNIGA M.G., Thermal deactivation of immobilized penicillin acylase in the presence of substrate and products, Biotechnol. Bioeng., 1996, 50, 609-616.
  • [16] ILLANES A., ALTAMIRANO C, AILLAPAN A., TOMASELLO G., ZUNIGA M.G., Packed-bed ractor performance with immobilized lactase under thermal inactivation, Enzyme. Microb. Technol., 1998, 23,3-9.
  • [17] GUZMAN-MALDONADO H., PAREDES-LOPEZ O., Amylolytic enzymes and products derived from starch: A review, Crit. Rev. Food Sci. Nutr., 1995, 35, 373-403.
  • [18] CONVERTI A., DEL BORGHI M., Simultaneous effects of immobilization and substrate protection on the thermodynamics glucose isomerase activity and inactivation, Enzyme Microb. Technol., 1997, 21,511-517.
  • [19] DE CORDT S.F., HENDRICKX M.E., MAESMANS G.J., TOBBACK P.P., J. Convenience of immobilized Bacillus licheniformis a-amylase as Time-Temperature-Integrator (TTI), Chem. Tech. Biotechnol., 1994, 59., 193-199.
  • [20] DE CORDT S.F., VANHOOF K„ HU J., MAESMANS G.J., HENDRICKX M.E. TOBBACK P.P., Thermostability os soluble and immobilized a-amylase from Bacillus licheniformis, Biotechnol. Bioeng., 1992, 40, 396-402.
  • [21] HESS J.M., KELLY R.M., Influence of polymolecular events on inactivation behavior of xylose isomerase fromThermotoga neapolitana 5068, Biotechnol. Bioeng., 1999, 62, 509-517.
  • [22] LECKER D.N., KHAN A., Theoretical and experimental studies of the effects of heat, EDTA, and enzyme concentration on the inactivation rate of a-amylase from Bacillus sp, Biotechnol. Prog. 1996, 12, 713-717.
  • [23] LUDIKHUYZE L.R., VAN DEN BROECK I., WEEMAES C.A., HERREMANS C.H., VAN IMPE J.F., HENDRICKX M.E., TOBBACK P.P., Kinetics for isobaric-isothermal inactivation of Bacillus subtilisa-amylase, Biotechnol.Prog., 1997, 13, 532-538.
  • [24] LUDIKHUYZE L.R., VAN DEN BROECK I., WEEMAES C.A., HENDRICKX M.E., Kinetic parameters for pressure-temperature inactivation of Bacillus subtilis a-amylase, Biotechnol.Prog, 1997, 13, 617— 623.
  • [25] VISURI K, PASTINEN O., WU X., MAKINEN K, LEISOLA M., Stability of native and cross-linked crystalline glucose isomerase, Biotechnol. Bioeng., 1999, 62, 378-380.
  • [26] ZEIKUS J.G., Molecular dterminants of thermozyme activity and stability, [in:] Enzymes for Carbohydrate Engineering, Park, K.H, Robyt, J.F, Choi, Y.-D, (Eds.), Elsevier, Amsterdam., 1996, 145-161.
  • [27] GONZALEZ-TELLO P., CAMACHO F., JURADO E., GUADIX E.M., J. A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis of biopolymers, Chem. Tech. Biotechnol., 1996, 67, 286-290.
  • [28] AKEBERG C, ZUCCHI G., TORTO N., GORTON L., A kinetic model for enzymatic wheat starch saccharification, Chem. Tech. Biotechnol, 2000, 75, 306-314.
  • [29] BAHR T., CELEBI S. S., Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme Microb. Technol., 1998, 23, 301-304.
  • [30] VARALLYAY E., SASVARI Z., HOSCHKE A., ASBOTH B., A potential protein engineering site in Aspergillus niger glucoamylase: Vicinity of disulfide bridge 449-222, Acta Alimentaria., 1994, 23, 93-103.
  • [31] SASVARI Z., ASBOTH B., Formation of disulfide-bridged dimers during theroinactivation of glucoamylase from Aspergillus niger, Enzyme Microb. Technol., 1998, 22, 466-470.
  • [32] ROIG M.G., SLADE A., KENNEDY J.F., TAYLOR D.W., GARAITA M.G., Investigations of stabilities, pH, and temperature profiles and kinetic parameters of glucoamylase immobilized on plastic supports, Appl. Biochem. Biotechnol., 1995, 50, 11-33.
  • [33] VANDERSALL A.S., CAMERON R.G., NAIRN III C.J., YELENOSKY G, WODZINSKI R.J., Identification, characterization, and partial purification of glucoamylase from Aspergillus niger, Prep. Biochem., 1995,25,29-55.
  • [34] SASVARI A.S., ASBOTH B., Crosslinking of glucoamylases via carbohydrates hardly affects catalysis but impairs stability, Biotechnol. Bioeng., 1999, 63, 459-463.
  • [35] PAZUR J.H., ANDO T., Purification and characterization of glucoamylase from Aspergillus niger, J. Biol. Chem., 1959, 234, 1966-1971.
  • [36] LlNEBACK D.R., RUSSELL I.J., RASMUSSEN C, TWO forms of the glucoamylase of Aspergillus niger, Biochem. Biophys., 1969, 134, 539-553.
  • [37] SADANA A., MALHOTRA A, Microheterogeneity of enzymes and deactivation, Biotechnol. Bioeng., 1987,30, 1041-1056.
  • [38] JANECEK S., Strategies for obtaining stable enzymes. Process Biochem., 1993, 28, 435-445.
  • [39] ZALE S.E., KLIBANOV A.M., On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation, Biotechnol. Bioeng., 1983, 25, 2221-2230.
  • [40] LUMRY R., EYRING H., Conformation changes of proteins, J. Phys. Chem., 1954, 58, 110-121.
  • [41] POLAKOVIC M., VRABELP., Analysis of mechanism and kinetics of thermal inactivation of enzymes: Critical assessment of isothermal inactivation experiments. Process Biochem., 1996, 31, 787-800.
  • [42] GIANFREDA L., MARRUCI G., GRIZZUTI N., GRECO G. JR., Acid phophatase deactivation by a series mechanism, Biotechnol. Bioeng., 1984, 26, 518-527.
  • [43] HENLEY J.P., SADANA A., Deactivation theory, Biotechnol. Bioeng., 1986, 28, 1277-1285.
  • [44] VRABEL P., POLAKOVIC M, STEFUCA V., BALES V., Analysis of mechanism and kinetics of thermal inactivation of enzymes: Evaluation of multitemperature data on the inactivation of yeast invertase. Enzyme Microb. Technol., 1996, 19, 1-7.
  • [45] NATH S., A rapid method for determining kinetic parameters of enzymes exhibiting nonliner thermal inactivation behavior, Biotechnol. Bioeng., 1996, 49, 106-110.
  • [46] GRECO G., JR., GIANFREDA L., An experimental technique for the discrimination between series and parallel mechanisms of enzyme deactivation, Biotechnol. Lett. 1984, 6, 693-698.
  • [47] HENLEY J.P., SADANA A., Categorization of enzyme deactivations using a series-type mechanism. Enzyme Microb. Technol., 1985, 7, 50-60.
  • [48] HENLEY J.P., SADANA A., Series types enzyme deactivations: Influence of intermediate actiivty on deactivation kinetics. Enzyme Microb. Technol., 1984, 6, 35-41.
  • [49] TSOU C.-L., Inactivation procedes overall molecular conformation changes during enzyme denaturation, Biochim. Biophys. Acta., 1995, 1253, 151-162.
  • [50] LENCKI R.W., ARUL J., NENFELD R.J., Effect of subunit dissociation, denaturation, aggregation, coagulation, and decomposition on enzyme inactivation kinetics: I, First-order behavior, Biotechnol. Bioeng., 1992,40, 1421-1426.
  • [51] GRECO G.J., PIROZZI D., GIANFREDA L., Thermal equivalence criteria in the chemical deactivation and stabilization of acid phosphatase, Enzyme Microb. Technol., 1991, 13, 353-358.
  • [52] TOSCANO G., PIROZZI D., MAREMONTI M., GIANFREDA L., GRECO G., Jr, Kinetics of enzyme deactivation: A case study. Catalysis Today., 1994, 22, 489-510.
  • [53] HEI D.J., CLARK D.S., Estimation of melting curves from enzymatic activity - temperature profiles, Biotechnol. Bioeng., 1993, 42, 1245-1251.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1006-3971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.