PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model kinetyczny procesu biosyntezy kwasu cytrynowego przez Aspergillus Niger

Identyfikatory
Warianty tytułu
EN
Kinetic modelling of citric acid production by Aspergillus niger
Języki publikacji
PL
Abstrakty
PL
Podjęto próbę sformułowania modelu strukturalnego opisującego stechiometrię i kinetykę wytwarzania kwasu cytrynowego przez Aspergillus niger. Dane doświadczalne procesu wgłębnej biosyntezy kwasu cytrynowego prowadzonego w podłożu syntetycznym z sacharozą w 30 degree C wykorzystano do identyfikacji modelu. Stwierdzono, że zaproponowany model matematyczny bardzo dobrze odzwierciedla charakter zmian danych doświadczalnych.
EN
A structured, non-segregated model that describes the stoichiometry and kinetics of citric acid production by Aspergillus niger from hexoses has been developed. The model was validated in experiments of the submerged culture of A. niger in synthetic sugar media at 30 stopni C. The formulated stoichiometry and balance equations allowed model predictions to be in qualitative and quantitative agreement with the experimental data.
Rocznik
Strony
99--116
Opis fizyczny
Bibliogr. 53 poz., tab., wykr., rys.,
Twórcy
autor
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska, Katedra Inżynierii Bioprocesowej, 93-005 Łódź, Wólczańska 213
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska, Katedra Inżynierii Bioprocesowej, 93-005 Łódź, Wólczańska 213
autor
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska, Katedra Inżynierii Bioprocesowej, 93-005 Łódź, Wólczańska 213
Bibliografia
  • [1] NIELSEN J., VILLANDSEN J., Bioreaction Engineering Principles, New York, Plenum Press, 1994.
  • [2] BAILEY J.E., OLLIS D.F., Biochemical Engineering Fundamentals, MacGraw-Hill, New York, 2nd Edition, 1986.
  • [3] SHULER M.L., Single-cell models: promise and limitations. Journal of Biotechnology, 1999,71, 225.
  • [4] TOMITA M., Whole-cell simulation: a grand challenge of the 21" century, Trends in Biotechnology, 2001,19 (6), 205.
  • [5] ROELS J.A., Energetics and Kinetics in Biotechnology. Amsterdam, Elsevier, 1983.
  • [6] VARNER J., RAMKRISHNA D., Mathematical models of metabolic pathways. Current Opinion in Bio-technology, 1999, 10, 146.
  • [7] Nielsen J., Villadsen J., Modelling of microbial kinetics, Chemical Engineering Science, 1992, 47 (17/18), 4225.
  • [8] WAYMAN F., AMY H.A.M., KRISTIANSEN B., Modelling the fermentation process, [in:] Citric Acid Biotechnology Kristiansen B., Mattey M. and Linden J. (Eds.), Taylor & Francis Ltd, London, Phi¬ladelphia, Chapter 7, 1999,105.
  • [9] BAJPAI R.K., REUSS M., A mechanistic model for penicillin production. Journal of Chemical Technology and Biotechnology, 1980,30, 332.
  • [10] REUSS M., FROHUCH S., KRAMER B., MESSERSCHMIDT K., POMMERENING G., Coupling of microbial kinetics and oxygen transfer for analysis and optimization of gluconic acid production with Aspergillus niger, Bioprocess Engineering, 1986,1,79.
  • [11] ROHR M., ZEHENTGRUBER O., KUBICEK CP., Kinetics of biomass formation and citric acid production by A. niger on pilot plant scale, Biotechnology and Bioengineering, 1981,23,2433.
  • [12] GOUDAR CH.T., STREVETT K.A., Estimating growth kinetics of Penicillium chrysogenum by nonlinear regression. Biochemical Engineering Journal, 1998,1,191.
  • [13] TRINCI A.P.J., SAUNDERS P.T., Tip growth of fungal hyphae. Journal of General Microbiology, 1977, 103,243.
  • [14] BARTNICKI-GARCIA S., HERGERT F., GIERZ G, A novel computer model for generating cell shape: application to fungal morphogenesis, [in:] Kuhn P.J., Trinci A.P.J., Jung M.J., Goosey M.W., Cop¬ping L.G. (Eds.), Springer, Berlin, 1990.
  • [15] COHEN D., Computer simulation of biological pattern generation process, Nature, London, 1967, 216, 246.
  • [16] PROSSER J.I., TRINCI A.P.J., A model for hyphal growth and branching. Journal of General Microbiology, 1979, 111, 153.
  • [17] AYNSLEY M., WARD A.C., WRIGHT A.R., A mathematical modglfor the growth of mycelial fungi in submerged culture. Biotechnology and Bioengineering, 1990, 35, 820.
  • [18] VINIEGRA-GONZALES G, SAUCEDO-CASTANEDA G, LOPEZ-ISUNZA F, FAVELA-TORRES E., Symmetric branching model for the kinetics of mycelial growth, Biotechnology and Bioengineering, 1993, 42, 1.
  • [19] NIELSEN J., KRABBEN P., Hyphal growth and fragmentation of P. chrysogenum in submerged cultures. Biotechnology and Bioengineering, 1995,46, 588.
  • [20] KRABBEN P., NIELSEN J., Modeling the mycelium morphology of Penicillium species in submerged cultures, [in:] Advances in Biochemical Engineering/Biotechnology, Scheper Th. (Ed.), Springer-Verlag, Berlin, Heidelberg, Vol. 60, 1998, 125.
  • [21] YANG H., REICHL U., KING R., GILLES E.D., Measurement and simulation of the simulation of the morphological development of filamentous microorganisms. Biotechnology and Bioengineering, 1992, 39,44.
  • [22] YANG H., KING R., REICHL U., GILLES E.D., Mathematical model for apical growth, septation, and branching of mycelial microorganisms, Biotechnology and Bioengineering, 1992, 39,49.
  • [23] LEJEUNE R., NIELSEN J., BARON G.V., Morphology of Trichoderma reset QM 9414 in submerged cultures. Biotechnology and Bioengineering, 1995,47,609.
  • [24] LEJEUNE R., BARON G.V., Modeling the exponential growth of filamentous fungi during batch cultivation. Biotechnology and Bioengineering, 1998,60 (2), 169.
  • [25] MEGEE R.D., KINOSHITA S., FREDRICKSON A.G., TSUCHIYA H.M., Differentiation and product formation in molds. Biotechnology and Bioengineering, 1970,12,771.
  • [26] KRISTIANSEN B., SINCLAIR C.G., Production of citric acid in continuous culture. Biotechnology and Bioengineering, 1979, 21,297.
  • [27] MINARIK M., MARENDING T., MICHAUK P., HEINZLE E., Citric acid production from starch: Modelling, optimization and control. International Symposium Modelling for Improved Bioreactor Per¬formance, 27-28 September 1993, Papiernicka, Slovakia, Proceedings, Bales V. (Ed.), Bratislava, 1993,134.
  • [28] NESTAAS E., WANG D.I.C., Computer control of the penicillin fermentation using the filtration probe in conjugation with a structured process model. Biotechnology and Bioengineering, 1983,25,781.
  • [29] NIELSEN J., A simple morphologically structured model describing the growth of filamentous microorganisms, Biotechnology and Bioengineering, 1993,41,715.
  • [30] ZANGIROLAMI T.C., JOHANSEN C.L., NIELSEN J., JORGENSEN S.B., Simulation of penicillin production in fed-batch cultivations using a morphologically structured model, Biotechnology and Bioengine¬ering, 1997,56 (6), 44.
  • [31] PAUL G.C., THOMAS C.R., A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum, Biotechnology and Bioengineering, 1996,51, 558.
  • [32] PAUL G.C., SYDDALL M.T., KENT C.A., THOMAS C.R., A structured model for penicillin production on mixed substrates, Biochemical Engineering Journal, 1998, 2,11.
  • [33] MATSUMURA M., IMANAKA T., YOSHIDA T., TAGUCHI H., Modelling of cephalosporin C production and its application to fed-batch culture, Journal of Fermentation Technology, 1981,59,115.
  • [34] GOMBERT A.K., NIELSEN J., Mathematical modelling of metabolism, Current Opinion in Biotechnology, 2000, 11, 180.
  • [35] TORRES N.V., Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of the steady state. Biotechnology and Bioengineering, 1994,44,104.
  • [36] TORRES N.V., Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: II. Sensitivity analysis, Biotechnology and Bioengineering, 1994,44,112.
  • [37] TORRES N.V., Vorr E.O., GONZALEZ-ALCON C, RODRIGUEZ F., A novel approach for design an overexpression strategy for metabolic engineering. Application to the carbohydrate metabolism in the citric acid producing mould Aspergillus niger, Food Technology and Biotechnology, 1998, 36 (3), 177.
  • [38] ALVAREZ- VASQUEZ F., GONZALEZ-ALCON C, TORRES N.V., Metabolism of citric acid production by Aspergillus niger: Model definition, steady-state analysis and constrained optimization of citric acid production rate. Biotechnology and Bioengineering, 2000,70, 82.
  • [39] STEPHANOPOULOS G.N., ARISTIDOU A.A., NIELSEN J., Metabolic Engineering. Principles and Met-hodologies, San Diego, Academic Press, 1998.
  • [40] KRZYSTEK L., LEDAKOWICZ S., Citric Acid Biotechnology, London, Taylor & Francis Ltd, Chapter 8, 1999,121.
  • [41] KRZYSTEK L., GLUSZCZ P., LEDAKOWICZ S., Determination of Yield and Maintenance Coefficients in Citric Acid Production by A. niger. Chemical Engineering Journal, 1996, 62,215.
  • [42] KRZYSTEK L., LEDAKOWICZ S. BIZUKOJC M., Kinetic modeling of citric acid production by A. niger, 28th Conference of the Slovak Society of Chemical Engineering, Tatranske Matliare, 21-25 May 2001, Slovakia, Conference materials on CD-ROM, 2001, L06,1.
  • [43] KRZYSTEK L., LEDAKOWICZ S., BIZUKOJC M., Stoichiometry and kinetics of citric acid production by Aspergillus niger, 10th European Congress on Biotechnology, Madrid, Spain, 8-11 July 2001, Con-ference materials, 2001, ENG-93, 167.
  • [44] WOLSCHEK M.F., KUBICEK CH.P., Biochemistry of citric acid accumulation by Aspergillus niger, [in:] Citric Acid Biotechnology, Kristiansen B., Mattey M. and Linden J. (Eds.), Taylor & Francis Ltd, London, Chapter 2,1999, 11.
  • [45] RUBIO M.C, MALDONALDO M.C, Purification and characterization of invertase from Aspergillus niger, Current Microbiology, 1995, 31, 80.
  • [46] TORRES N.V., RIOL-CIMAS J.M., WOLSCHEK M., KUBICEK CP., Glucose transport by Aspergillus niger: the low-affinity carrier is only formed during growth on high glucose concentrations. Ap¬plied Microbiology and Biotechnology, 1996,44,790.
  • [47] WAYMAN F.M., MATTEY M., Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnology and Bioengineer¬ing, 2000, 67 (4), 451.
  • [48] HONDMAN D.H.A., VISSER J., Carbon metabolism, [in:] Aspergillus: 50 years on, Martinelli S.D., Kinghorn J.R. (Eds.), Elsevier, Amsterdam, 1994.
  • [49] RIZZI M., BALTES M., THEOBALD U., REUSS M., In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model, Biotechnology and Bioengineering, 1997,55 (4), 592.
  • [50] HABISON A., KUBICEK CP., ROEHR M., Partial purification and regularory properties of phospho- fructokinase from Aspergillus niger, Journal of Biochemistry, 1983,209,669.
  • [51] MEIXNER-MONORI B., KUBICEK CP., ROEHR M., Pyruvate kinase from Aspergillus niger a regulatory enzyme in glycolysis! Canadian Journal of Microbiology, 1984, 30,16.
  • [52] HERBERT D., PHIPPS P.J., STRANGE R.E., Chemical analysis of microbial cells, [in:] Methods in Microbiology, Norris J.R., Ribbons D.W. (Eds.), Academic Press, London, 5B, 1971.
  • [53] KRZYSTEK L., LEDAKOWICZ S., Energetics of Aspergillus niger growth and production of citric acid, 28th Conference of the Slovak Society of Chemical Engineering, Tatranske Matliare, 21-25 May 2001, Slovakia, Conference materials on CD-ROM, 2001, L54,1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1006-3964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.