PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kryterium autotermiczności reaktora o periodycznie zmienianym kierunku zasilania surowcem

Autorzy
Identyfikatory
Warianty tytułu
EN
Autothermicity of a reverse-flow reactor
Języki publikacji
PL
Abstrakty
PL
Stabilna praca reaktora o periodycznie zmienianym kierunku przepływu mieszaniny reagującej osiągana jest w tzw. cyklicznym stanie ustalonym o ściśle zdefiniowanych właściwościach symetrii profili zmiennych stanu, które ustalono w wyniku złożonych symulacji dynamicznych procesu. Wprowadzając właściwości symetrii profili zmiennych stanu do równań modelu matematycznego reaktora, wyprowadzono ścisłe zależności ilościowe definiujące cykliczny stan ustalony, określając zarazem kryterium autotermiczności reaktora. W rozważaniach tych wykorzystano jednowymiarowy ciągły model dwufazowy reaktora katalitycznego. Równania opisujące ten model zostały przekształcone do takiej postaci, która umożliwiała wykorzystanie w niej właściwości symetrii profili temperatury i składu mieszaniny. Wyprowadzone zależności stanowią ponadto narzędzie umożliwiające badanie w stosunkowo prosty sposób zbieżności do cyklicznego stanu ustalonego w trakcie symulacji dynamicznej.
EN
Stable operation of a reverse-flow reactor is accomplished as the so-called cyclic steady-state which is characterised by strictly defined symmetry properties of the profiles of state variables. These symmetry properties have been determined as a result of numerous dynamic simulations of the process considered. In the present study, introducing the symmetry properties into the balance equations of the mathematical model of the reactor, exact quantitative relations have been developed which clearly define the cyclic steady-state and, simultaneously, determine the criterion of autothermicity of the process. In the considerations, a one-dimensional, two-phase, continuous model of the reactor has been applied. The equations of the reactor model have been transformed to such a form which enables the introduction of the symmetry properties of the profiles of temperature and mixture composition. Moreover, the equations derived form a tool, which makes it possible to investigate, in a relatively simple way, the convergence to the cyclic steady-state during the dynamic simulations.
Rocznik
Strony
3--19
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Polska Akademia Nauk, Instytut Inżynierii Chemicznej, ul. Bałtycka 5, 440100 Gliwice
Bibliografia
  • [1] BORESKOV G.K., MATROS Y.S., BUNIMOVICH G.A., IVANOV A.A., Catalytic processes carried out under non-steady state conditions: switching the direction of feed of the reaction mixture to the catalyst bed. Experimental results, Kinet. Kat., 1982, 23, 402.
  • [2] BORESKOV G.K., BUYANOV R.A., IVANOV A.A., Kinetic studies of sulphur dioxide oxidation on vanadium catalyst, Kinet. Ratal., 1967, 8, 153.
  • [3] GOSIEWSKI K., Dynamic modelling of industrial S02 oxidation reactors, Chem. Eng. Proa, 1993,32,111.
  • [4] SNYDER J.D., SUBRAMANIAM B., Numerical simulation of a periodic flow reversal reactor for sulphur dioxide oxidation, Chem. Eng. Sci., 1993, 48, 4051.
  • [5] BUNIMOVICH G.A., VERNIKOVSKAYA N.N., STROTS V.O., BALZHINIMAEV B.S., S02, oxidation in a reverse-flow reactor: influence of a vanadium catalyst dynamic properties, Chem. Eng. Sci., 1995, 50, 565.
  • [6] GROZEV G.G., SAPUNDZHIEV C, ELENKOV D.G., Unsteady-State S02 Oxidation, Ind. Eng. Chem. Res., 1994, 33, 2248.
  • [7] SILVESTON P.L., HUDGINS R.R., BOODASHEV S., VERNIKOVSKAYA N., MATROS Y.S., Modelling of a periodically operating packed-bed S02 oxidation reactor at high conversion, Chem. Eng. Sci., 1994,49, 335.
  • [8] THULLIE J., BURGHARDT A., Application of the flow-reversal reactor to the methanol synthesis, [in:] Unsteady-state processes in catalysis, Y.S.Matros (Ed.), 1990, VPS, BV, Utrecht, pp.687-692.
  • [9] NEOPHYTIDES S.G., FROMENT G.F., A bench scale study of reversed flow methanol synthesis, Ind. Eng. Chem. Res., 1992, 31, 1583.
  • [10] VAN DEN BUSCHE K.M., NEOPHYTIDES S.N., ZOLOTARSKI I.A., FROMENT G.F., Modelling and simulation of the reversed flow operation of a fixed-bed reactor for methanol synthesis, Chem. Eng. Sci., 1993,48, 3335.
  • [11] MATROS Y.S., Catalytic Processes under Unsteady State Conditions, 1989, Elsevier, Amsterdam.
  • [12] MATROS Y.S., NOSKOV A.S., CHUMACHENKO V.A,. GOLDMAN O.V., Theory and application of unsteady-state catalytic detoxication of effluent gases from dioxide, nitrogen oxides and organic compounds, Chem. Eng. Sci., 1988,43, 2061.
  • [13] EIGENBERGER G., NIEKEN U., Catalytic combustion with periodic flow reversal, Chem. Eng. Sci., 1998,53,2109.
  • [14] EIGENBERGER G, NIEKEN U., Katalytische Abluftreinigung: Verfahrenstechnische Aufgaben und neue Lbsungen, Chem. Ing. Tech., 1991, 63, 781.
  • [15] CHAOUKI J., GUY C, SAPURDZHIEV C, KUSOHORSKY D., KLVANA D., Combustion of Methane in a Cyclic Catalytic Reactor, Ind. Eng. Chem. Res., 1994, 33, 2957.
  • [16] NIEKEN U., KOLIOS G., EIGENBERGER G., Fixed-bed reactors with periodic flow reversal: /^x)&rimiHtal results for catalytic combustion, Catal. Today, 1994, 20, 335.
  • [17] NIEKEN U., KOUOS G., EIGENBERGER G., Control of the ignited steady state in autothermal fixed-bed reactors for catalytic combustion, Chem. Eng. Sci., 1994,49,5507.
  • [18] VAN DE BELD L., BORMAN R.A., DERKX O.R., VAN WOEZIK B.A.A., WESTERTERP K.R., Removal of organic compounds from polluted air in a reverse flow reactor: An experimental study, Ind. Eng. Chem., 1994, 33,2946.
  • [19] VAN DE BELD L., WESTERTERP K.R., Air purification in a reverse-flow reactor: Model simulation vs. experiments, AIChE J., 1996, 42, 1139.
  • [20] CUNILL R, VAN DE BELD L., WESTERTERP K.R., Catalytic combustion of very lean mixtures in a reverse-flow reactor using an internal electric heater, Ind. Eng. Chem. Res., 1997, 36,4198.
  • [21] BAHTIA S.K., Analysis of catalytic reactor operation with periodic flow reversal, Chem. Eng. Sci., 1991,46, 361.
  • [22] YOUNG B., HILDEBRANDT D. GLASSER D., Analysis of an exothermic reversible reaction in a catalytic reactor with periodic flow reversal, Chem. Eng. Sci., 1992, 47, 1825.
  • [23] NIEKEN U., KOUOS G., EIGENBERGER G., Limiting cases and approximate solutions for flxed-bed reactors with periodic flow reversal, AIChE J., 1995,41, 1915..
  • [24] THULLIE J., BURGHARDT A., Simplified procedure for estimating maximum cycling time of flow-reversal reactors, Chem. Eng. Sci., 1995,50, 2299.
  • [25] HAYNES T., GEORGAKIS C, CARAM H.S., The design of reversible flow reactors for catalytic combustion system, Chem. Eng. Sci., 1995,50,401.
  • [26] GUPTA V.K., BHATIA S.K., Solution of cyclic profiles in catalytic reactor operation with periodic flow reversal, Chem. Eng., 1991, 16, 152.
  • [27] WlCKE E., VORTMEYER D., Ziindzonen heterogener Reaktionen in gasdurchstrbmten Kornerschichten, Ber. Bunsenges, 1959, 63, 145.
  • [28] KiSiELEV O.V., MATROS Y.S., Propagation of the combustion front of a gas mixture in a granular bed of catalyst. Combustion, Explos. Shock-Waves, 1990, 16, 152.
  • [29] PINJALA V., CHEN Y.C., LUSS D., Wrong-way behaviour of packed bed reactors, AIChE J., 1988, 34, 1663.
  • [30] BURGHARDT A., BEREZOWSKI M., JACOBSEN E.W., Approximate characteristics of a moving temperature front in a fixed-bed reactor, Chem. Eng. Proc, 1999, 38, 19-34.
  • [31] BURGHARDT A., BEREZOWSKI M., JACOBSEN E.W., Approximate characteristics of a moving temperature front in a fixed-bed catalytic reactor based on a heterogeneous reactor model, Int. Chem. Proc., 1999,20,523.
  • [32] BURGHARDT A., BEREZOWSKI M., Approximate characteristics of a moving temperature front in a fixed-bed catalytic reactor. The case of vanishing thermal front propagation velocity, Inz. Chem. Proc., 2001,22, 3.
  • [33] KHINAST J., Luss D., Mapping regions with different bifurcation diagrams of a reverse-flow reactor, AIChE J., 1997,43,2034.
  • [34] KHINAST J., CURUMOORTHY A., Luss D., Complex dynamic features of a cooled reverse-flow reactor, AIChE J., 1998,44, 1128.
  • [35] KHINAST J., JEONG Y.O., Luss D., Dependence of cooled reverse-flow reactor dynamics on reactor model, AIChE J.,1999,45, 299-309.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1006-3953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.