PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determining local heat transfer coefficient on the circumference of smooth and longitudinally finned tubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distribution of the heat transfer coefficient is calculated from temperature. The unknown parameters associated with the solution are selected to achieve the closet agreement in the least squares sense between the computed and measured temperatures using the Levenberg-Marquardt method. The nonlinear least .squares problem is parametrized by assuming the staircase changes of heat transfer coefficient on the boundary or expressing the space variations of the heat transfer coefficient in the functional term. Determination of the circumferential heat transfer coefficient distribution on the heated tube with two longitudinal fins in cross flow demonstrates the accuracy of the developed method. The actual experimental data were used. Experiments were performed with an array of vertical tubes arranged in staggered pattern.
Słowa kluczowe
Rocznik
Strony
35--52
Opis fizyczny
Bibliogr. 23 poz., wz., rys, wykr.
Twórcy
autor
  • Cracow University of Technology, Division of Power Engineering, Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, Division of Power Engineering, Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, Division of Power Engineering, Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • [1] GOLDSTEIN R. J., CHO H. H.: A review of mass transfer measurements using naphthalene sublimation, Experimental Thermal and Fluid Sci. 10(1995), 416-434.
  • [2] KOTTKE V., GESCHWIND P, Li H. D.: Heat and mass transfer along curved walls in internal flows, ERCOFTAC Bulletin 32(1997), 21-24.
  • [3] BIENIASZ B., KIEDRZŃSKI K, SMUSZ R., WILK J.: Effect of posinoting the axis of a lamellar rotor model of sucking and forcing regenerative exchanger on the intensity of convective mass/heat transfer, Int. J. Heat Mass Transfer, Vol. 40, No. 14 (1997), 3275-3282.
  • [4] BAUGHN J. W., MAYHEW J. E., ANDERSON M. R., BUTLER R. J.: A periodic transient method using liquid crystals for the measurement of local heat transfer coefficients, Transactions of the ASME, J. Heat Transfer 120 (1998), 772-777.
  • [5] Du H., EKKAD S., HAN J. C.: Effect of unsteady wake with trailing edge coolant ejection on detailed heat transfer coefficient distributions for a gas turbine blade, Transactions of the ASME, J. Heat Transfer 119 (1997), 242-248.
  • [6] TALER J.: Theory of transient experimental techniques for surface heat transfer, Int. J. Heat Mass Transfer 39 (1992), 3733-3748.
  • [7] TALER J.: Numerical solutions for general inverse heat conduction problem, Wärme-und Stoffübertragung 27 (1992), 505-513.
  • [8] TALER J.: Nonlinear steady-state inverse heat conduction problem with space-variable boundary conditions, Transactions of the ASME, J. Heat Transfer 114 (1992), 1048-1051.
  • [9] MARTIN T. J., DULIKRAVICH G. S.: Inverse determination of steady heat convection coefficient distribution, Transactions of the ASME, J. Heat Transfer 120 (1998), 328-334.
  • [10] HENSEL E., HILLS R.: Steady-state two-dimensional inverse heat conduction, Num. Heat Transfer Part B 15 (1989), 227-240.
  • [11] MARTIN T. J., DULIKRAVICH G. S.: Inverse determination of boundary conditions and sources in steady heat conduction with heat generation, Transactions of the ASME, J. Heat Transfer 118 (1996), 546-554.
  • [12] BECK J. V., BLACKWELL B., CLAIR CH. R. ST.: Inverse Heat Conduction, Ill-posed Problems, Wiley-Interscience, Canada 1985.
  • [13] SEBER G.A.F., WILD C.J.: Nonlinear Regression, Wiley-Intersci., New York 1989.
  • [14] BCLSF Subroutine, IMSL MATH/LBRARY Fortran subroutines for mathematical applications, Volume 2, Visual Numerics Inc. 1994.
  • [15] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T., FLANNERY B. P.: Numerical Recipes. The Art of Scientific Computing, Cambridge University Press 1997.
  • [16] ASHRAE Standard 33-798. Method of testing forced circulation air cooling and air heating coils, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta 1978.
  • [17] ASHRAE Standard 84-1991. Method of testing air-to-air heat exchangers, American Society of Heating, Refrigerating and Air-Conditioning Engs., Inc., Atlanta 1992.
  • [18] ARI Standard 4-10-91. Forced circulation air-cooling and air-heating coils, Air Conditioning & Refrigeration Institute, Arlington, VA 1991.
  • [19] Policy on Reporting Uncertainties in Experimental Measurements and Results, Transactions of ASME, J. Heat Transfer 122(2000), 411-413.
  • [20] HOBLER T.: Heat Transfer and Heat Exchangers, WNT, Warszawa 1979. (in Polish)
  • [21] ORŁOWSKI P.: Steam Boiler. Construction and Calculation¡ WNT, Warszawa 1979. (in Polish)
  • [22] HARTNETT J.P., IRVINE T.F.: Advances in Heat Transfer, Academic Press, New York, Vol. 31, 1972.
  • [23] Fluent 6.0, Fluent Inc., Computational Fluid Dynamics Software, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766, USA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1003-3625
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.