PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Small-scale variation of microbial activities in a forest soil under a beech (Fagus sylvatica L.) stand

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To evaluate the small-scale (100 m^2) spatial variability of selected soil biological properties in a beech stand and the influence of soil properties on soil microbial activity, we collected soil samples on April 2, July 2 and October 30 (2002) from three (9 x 10 m) plots, distributed on a 1x1 m grid, from the top 10 cm of the mineral soil (A horizon). In soil samples, soil respiration and catalase activity were measured. Within-plot coefficients of variation of catalase activity varied from 19 to 23%, those of soil respiration rate ranged from 37 to 54%. Catalase activity exhibited highly significant correlations with soil reaction, whereas soil respiration rate correlated with moisture and humus content. Soil respiration rates appear to be randomly distributed over the sampling area. On the other hand, catalase activity exhibits a rather distinct patchy structure. No relationships between the position of trees and soil respiration rates were found. For catalase activities, the highest values were observed on transsections of perimeters of dominant-tree crowns.
Rocznik
Strony
311--321
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Technical University in Zvolen, Faculty of Forestry, T. G. Masaryka 24, SK-960 53 Zvolen, Slovakia
Bibliografia
  • [1] Alef K. 1991 – Methodenhandbuch Bodenmikrobiologie. Aktivitäten, Biomasse, Differenzierung. – Ecomed, Landesberg, 284 pp.
  • [2] Beck Th. 1971 – Die Messung der Katalaseaktivität von Böden – Zeitschr. f. Pflanzenern. und Bodenkunde, 130: 68-81.
  • [3] Bruckner A., Kandeler E., Kampichler C. 1999 – Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest – Geoderma, 93: 207-223.
  • [4] Buchmann N. 2000 – Biotic and abiotic factors controlling soil respiration rates in Picea abies stands – Soil Biology and Biochemistry, 32: 1625-1635.
  • [5] Decker K. L. M., Boerner R. E. J., Morris S. J. 1999 – Scale-dependent patterns of soil enzyme activity in a forested landscape – Can. J. For. Res. 29: 232-241.
  • [6] Henrich M., Haselwandter K. 1991 – Denitrifying potential and enzyme activity in a Norway spruce forest – Forest Ecology and Management, 44: 63-68.
  • [7] Imberger K. T., Chiu Ch-Y. 2001 – Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region – Biology and Fertility of Soils, 33: 105-110.
  • [8] Imberger K. T., Chiu Ch-Y. 2002 – Topographical and seasonal effects on soil fungal and bacterial activity in subtropical, perhumid, primary and regenerated montane forests – Soil Biology and Biochemistry, 34: 711-720.
  • [9] Ladd J. N. 1978 – Origin and Range of Enzymes in Soil (In Soil Enzymes, Eds. R. G. Burns) – Academic Press, New York, pp. 51-95.
  • [10] Lensi R., Lescure C., Claye- Josserand A., Gourbiere F. 1991 – Spatial distribution of nitrification and denitrification in an acid forest soil – Forest Ecology and Management, 44: 29-40.
  • [11] Mäder P., Nowack K., Alföldi T. 1993 – Literaturstudie zur Wahl der Methode für die Schätzung der mikrobiellen Biomasse im Boden sowie zur zeitlichen und räumlichen Variabilität der mikrobiellen Biomasse, der Bodenatmung und des Zelluloseabbaus. Entscheidungs- und Arbeitsgrundlagen für den Einsatz bodenmikrobiologischer Methoden im Bodenschutz – Ausgeführt im Auftrag der Arbeitsgruppe Bodenbiologie der Bodenschutzfachsteller der Kantone Aargau, Bern und Solothurn, Oberwill, 147 pp.
  • [12] Merilä P., Ohtonen R. 1997 – Soil microbial activity in the coastal Norway spruce (Picea abies (L.) Karst.) forests of the Gulf of Bothnia in relation to humus layer quality, moisture and soil types – Biology and Fertility of Soils, 25: 361-365.
  • [13] Morris S. J. 1999 – Spatial distribution of fungal and bacterial biomass in Southern Ohio Hardwood forest soils: fine scale variability and microscale patterns – Soil Biology and Biochemistry, 31: 1375-1386.
  • [14] Möttönen M., Järvinen E., Hokkanen T. J., Kuuluvainen T., Ohtonen R. 1998 – Spatial distribution of soil ergosterol in the organic layer of a mature scots pine (Pinus sylvestris L.) forest – Soil Biology and Biochemistry, 31: 503-516.
  • [15] Müllebner M. 1984 – Enzymaktivitätsuntersuchungen in Wurzelbereich von Böden unter einigen Vegetationseinheiten mit verschiedenartiger Nutzung – Dissertation, Universität Wien, 109 pp.
  • [16] Obr. F., Ciesarik M., Šály R. 1991 – Návody na cvičenia z pedológie a mikrobiológie [Practical exercises in soil science and microbiology] – VŠLD, Zvolen, 123 pp. (in Slovak).
  • [17] Papritz A. 1987 – Veränderungen der Bodeneigenschaften im Stammflussbereich von Waldbäumen – Schweiz. Zeitsch. Forstwesen, 138: 945-862.
  • [18] Priha O., Hallantie T., Smolander A. 1999 – Comparing microbial biomass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods – Biology and Fertility of Soils, 30: 14-19.
  • [19] Quinn G. P., Keough M. J. 2002 – Experimental Design and Data Analysis for Biologists – Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, 537 pp.
  • [20] Robertson G. P., Crum J. R., Ellis B. G. 1993 – The spatial variability of soil resources following long-term disturbance – Oecologia, 96: 451-456.
  • [21] Saetre P., Baath E. 2000 – Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand – Soil Biology and Biochemistry, 32: 909-917.
  • [22] Savage K. E., Davidson E. A. 2001 – Interannual variation of soil respiration in two New England forests – Global Biogeochemical Cycles, 15: 337-350.
  • [23] Scott-Denton L. E., Sparks K. L., Monson R. K. 2003 – Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest – Soil Biology and Biochemistry, 35: 525-534.
  • [24] Stork R., Dilly O. 1998 – Maßstabsabhängige räumliche Variabilität mikrobieller Bodenkenngrößen in einem Buchenwald – Zeitschr. f. Pflanzenern. und Bodenkunde, 161: 235-242.
  • [25] Stoyan H., De-Polli H., Boehm S., Robertson G. P., Paul E. A. 2000 – Spatial heterogenity of soil respiration and related properties at the plant scale – Plant and Soil, 222: 203-214.
  • [26] Šály R., Pichler V. 1993 – Súčasné zmeny pôdnej reakcie v bučinách [Recent changes of soil acidity in beech stands] – Acta Facultatis Forestalis, Zvolen, 35: 51-69 (in Slovak).
  • [27] Tabatabai M. A. 1982 – Soil enzymes (In Methods of soil analysis, Part 2, Eds. A. L. Page) – Madison, Wisconsin USA, pp. 903-947.
  • [28] Vanhala P. 2002 – Seasonal variation in the soil respiration rate in coniferous forest soils – Soil Biology and Biochemistry, 34: 1375-1379.
  • [29] Wick B., Kühbe R. F., Vielhauer K., Vlek P. L. G. 2002 – Temporal variability of selected soil microbial and biochemical indicators under different soil quality conditions in south-western Nigeria – Biology and Fertility of Soils, 35: 155-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0833-3437
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.