Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mineralization (expressed as O2 consumption and CO2 release) of Scenedesmus quadricauda detritus was investigated in homothermal (spring, autumn) and stratified (summer, winter) conditions, using the Micro- Oxymax respirometer. In experiments, the rate of O2 consumption and CO2 release, sedimentation rate and time of mineralization of phycodetritus in water from 2.5, 7.5 and > 17 m depth were determined. It was found that 41% and 100% of detritus carbon (31.4 mg C dm^-3) added to the water could be mineralized in whole water column in time 28 days during spring and 37 days during autumn homothermal conditions. In summer stratification periods 61% of the detritus carbon during 29 days, and in winter 100% during 35 days, could be mineralised down to the depth 18 m. The rate of mineralization of phycodetritus depends on temperature and activity of microflora. The differences in the rate of O2 consumption and CO2 release between particular layers of water and seasons were statistically significant in the majority of cases.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
247--259
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Nature Conservation, Polish Academy of Sciences, Av. Mickiewicza 33, 31-120 Cracow, Poland
autor
- Institute of Nature Conservation, Polish Academy of Sciences, Av. Mickiewicza 33, 31-120 Cracow, Poland
Bibliografia
- [1] Afi L., Metzger P., Largeau C., Connan J., Berkaloff C., Rousseau B. 1996 – Bacterial degradation of green microalgae: Incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile – Organic Geochem. 25: 117-130.
- [2] Ahlgreen I. 1984 – Sedimentation and respiration loss rates during the decline of a blue-green algae bloom – Verh. Internat. Verein. Limnol. 22: 736-742.
- [3] Amblard C., Rachiq S., Bourdier G. 1992 – Photolithotrophy, photoheterotrophy and chemoheterotrophy during spring phytoplankton development (Lake Pavin) – Microb. Ecol. 24: 109-123.
- [4] Andersen J. M., Jacobsen O. S. 1979 – Production and decomposition of organic matter in eutrophic Frederiksborg Slotss?, Denmark – Arch. Hydrobiol. 85: 511-542.
- [5] APHA 1992 – Standard methods for the examination of water and wastewater – 18th ed. Amecican Public Health Association, Washington.
- [6] Bednarz T., Starzecka A. 1998 – Microbiological processes taking place in Dobczyce Reservoir during spring water bloom – Oceanol. Stud. 27 (2): 13-21.
- [7] Bednarz T., Mazurkiewicz-Boroń G., Starzecka A. in press – Nitzschia palea (Kütz.) W. Sm. water bloom in submountain dam reservoir and microbiological processes associated with them – Algol. Stud.
- [8] Berger B., Hoch B., Kavka G., Herndl G. J. 1995 – Bacterial metabolism in the River Danube: Parameters influencing bacterial production – Freshwater Biology, 34: 601-616.
- [9] Boon A. R., Duineveld G. C. A., Kok A. 1999 – Benthic organic matter supply and metabolism at depositional and non-depositional areas in the North Sea – Estuarine Coastal and Shelf Science, 49: 747-761.
- [10] Bucka H., Wilk-Woźniak E. 1998 – Dynamic of algae and cyanophytes developing in mass in dam reservoir: the Wisła Czarne reservoir and the Dobczyce reservoir (southern Poland) – Fragm. Flor. et Geobot. Ser. Polonica, 5: 269-277.
- [11] Burssaard C. P. D., Gast G. J., van Duyl F. C., Riegman R. 1996 – Impact of phytoplankton bloom magnitude on a pelagic microbial food web – Mar. Ecol. Progr. Ser. 144: 211-221.
- [12] Chen W. H., Wangersky P. J. 1996 – Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures – J. Plankton Res. 18: 1521-1533.
- [13] Choi K., Kim B., Lee U. H. 2001 – Characteristic of dissolved organic carbon in three layers of deep reservoir, Lake Soyang, Korea – Internat. Rev. Hydrobiol. 86: 63-76.
- [14] Christoffersen K., Riemann B., Hansen L. R., Klysner A., Sørensen H. B. 1990 – Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria – Microb. Ecol. 20: 253-272.
- [15] Chróst R. J. 1977 – O niektórych współzależnościach pomiędzy glonami i bakteriami w środowiskach wodnych [Some relationships between algae and bacteria in water environments] – Wiad. Ekol. 23: 343-358.
- [16] Duineveld G. C. A., Lavaleye M. S. S., Berghuis E. M., de Wilde P. A. W. J., van der Weele J., Kok A., Batten S. D., de Leeuw J. W. 1997 – Patterns of benthic fauna and benthic respiration in the Celtic continental margin in relation to the distribution of phytodetritus – Int. Rev. Ges. Hydrobiol. 82: 395-424.
- [17] Fujii M., Murashige S., Ohnishi Y., Yuzawa A. Miyasaka H., Suzuki Y., Komiyama H. 2002 – Decomposition of phytoplankton in seawater. Part 1. Kinetic analysis of the effect of organic matter concentration – J. Oceanogr. 58: 433-438.
- [18] Fulton R. S., Pearl H. W. 1987 – Toxic and inhibitory effects of the blue-green algae Microcystis aeruginosa on herbivorous zooplankton – J. Plankton Res. 9: 837-855.
- [19] Grossard H. P., Riemann L., Azam F. 2001 – Bacterial motility in the sea and its ecological implications – Aquat. Microb. Ecol. 25: 247-258.
- [20] Hansen L., Krogh G. F., Søndergaard M. 1986 – Decomposition of lake phytoplankton. 1. Dynamics of short term decomposition – Oikos, 46: 37-44.
- [21] Kunnis K. 1998 – Development of microbial community during Skeletonema costatum detritus degradation – Hydrobiologia, 363: 253-260.
- [22] Lampert W., Sommer U. 1996 – Ekologia Wód Śródlądowych [Ecology of inland water] – Warszawa, Państwowe Wydawnictwo Naukowe, 390 pp. (in Polish).
- [23] Mallet C., Debroas D.1999 – Relations between organic matter and bacterial proteolytic activity in sediment surface layers of a eutrophic lake (Lake Aydat, Puy de Dôme, France) – Arch. Hydrobiol. 145: 39-56.
- [24] Mazurkiewicz-Boroń G. 2000 – Parametry siedliskowe i troficzne [Habitat and trophic parameters] (In: Zbiornik Dobczycki – Ekologia – Eutrofizacja – Ochrona. [Dobczyce Reservoir – Ecology – Eutrophication – Protection] Eds. J. Starmach, G. Mazurkiewicz-Boroń) – Publ. Karol Starmach Institute of Freshwater Biology PAS, Kraków, pp. 63-80.
- [25] Moodley L., Middelburg J. J., Boschker H. T. S., Duineveld G. C. A., Pel R., Hetrman M. P. J., Heip C. H. R. 2002 – Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus – Mar. Ecol. Progr. Ser. 236: 23-29.
- [26] Pasternak K. 1969 – Szkic geologiczno-gleboznawczy zlewni rzeki Raby [A geological and pedological sketch of the Raba River catchment basin] – Acta Hydrobiol. 11: 407-422.
- [27] Poremba K. 1994 – Simulated degradation of phytodetritus in deep sea sediments – Mar. Ecol. Prog. Ser. 105: 291-299.
- [28] Sarazin G., Gaillard J. F., Philippe L., Rabouille C. 1995 – Organic matter mineralization in the pore water of a eutrophic lake (Aydat Lake, Puy de Dôme) – Hydrobiologia, 315: 95-118.
- [29] Starzecka A., Bednarz T. 1998 – Comparison of microbiological activity in bottom sediments of littoral and profundal zones of a submontaine dam reservoir – Acta Hydrobiol. 40: 293-300.
- [30] Starzecka A., Bednarz T. 2000 – III. 15. Mikrobiologiczne procesy zachodzące wZbiorniku Dobczyckim i rzece Rabie powyżej i poniżej zbiornika [Microbiological processes taking place in Dobczyce Reservoir and in the Raba River above and below the Reservoir] (In: Zbiornik Dobczycki – Ekologia – Eutrofizacja – Ochrona [Dobczyce Reservoir – Ecology – Eutrophication – Protection] Eds. J. Starmach, G. Mazurkiewicz-Boroń) – Publ. Karol Starmach Institute of Freshwater Biology PAS, Kraków, pp. 163-176.
- [31] Thomas J. D. 1997 – The role of dissolved organic matter, particularly free amino-acids and humic substances, in freshwater ecosystems – Freshwater Biology, 38: 1-36.
- [32] Wehr J. D., Petersen J., Findlay S. 1999 – Influence of three contrasting detrital carbon sources on planktonic bacterial metabolism in a mesotrophic lake – Microbial Ecology, 37: 23-35.
- [33] Weisse T., Müller H., Pinto-Coelho R. M., Schweizer A., Springmann D., Baldringer G. 1990 – Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake – Limnol. Oceanogr. 35: 781-794.
- [34] Wilk-Woźniak E. 2000 – III. 10. Fitoplankton [III. 10. Phytoplankton] (In: Zbiornik Dobczycki – Ekologia – Eutrofizacja – Ochrona [Dobczyce Reservoir – Ecology – Eutrophication – Protection] Eds. J. Starmach, G. Mazurkiewicz-Boroń) – Publ. Karol Starmach Institute of Freshwater Biology PAS, Kraków, pp. 95-112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0833-3359