PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Interaction of estuarine bacterioneuston and bacterioplankton with elevated mercury concentrations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of different concentrations of mercury on the number and respiratory activity of neustonic and planktonic bacteria derived from estuarine Lake Gardno (Baltic Coast, Poland) was studied. The laboratory experiments demonstrated that mercuric ions (Hg^2+) exhibited toxic effects on abundance and oxygen uptake of neustonic and planktonic bacteria. Bacterioneuston and bacterioplankton showed different responses to the mercuric ions. The neustonic bacteria showed higher levels of tolerance to various concentrations of Hg (10-15 mg dm^-3) in the culture medium than the planktonic ones (<10 mg dm^-3). It was found out that the bacteria isolated from freshwater zone of Lake Gardno were more tolerant to the increasing concentration of mercury ions (10-20 mg dm^-3) than bacteria isolated from the seawater and mixed zones of lakes. Non-pigmented bacteria from all layers and zones were more tolerant to the higher Hg^2+ concentrations than pigmented ones. High concentrations (above 8 [mi]g cm^-3) of mercury chloride in the respiratory substrate blocked completely oxygen uptake by neustonic and planktonic bacteria.
Rocznik
Strony
301--310
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Department of Experimental Biology, Pedagogical University, Arciszewskiego str. 22, 76-200 Słupsk, Poland
autor
  • Department of Experimental Biology, Pedagogical University, Arciszewskiego str. 22, 76-200 Słupsk, Poland
Bibliografia
  • [1] Albright J. L., Wilson M. L. 1974 – Sublethal effects of several metallic salts-organic compounds combinations upon the heterotrophic microflora of natural water – Wat. Res. 8: 181-195.
  • [2] Barkay T., Gilman M., Liebert C. 1990 – Genes encoding mercuric reductases from selected gram-negative aquatic bacteria have a low degree of homology with mer A of transposon Tn501 – Appl. Environ. Microbiol. 56: 1695-1701.
  • [3] Barkay T., Turner R. M., Saouter E., Horn J. 1992 – Mercury biotransformations and their potential for remediation of mercury contamination – Biodegradation, 3: 147-159.
  • [4] Bogdanova E. S., Mindlin S. Z., Pakrova E., Kocur M., Rouch D. A. 1992 – Mercuric reductase in environmental Gram-positive bacteria sensitive to mercury – FEMS Microbiol. Lett. 97: 95-100.
  • [5] Cursino L., Oberda S. M., Cecilio R. V., Moreira R. M., Chartone-Souza E., Nasicimento A. M. A. 1999 – Mercury concentration in the sediment at different gold prospecting sites along the Carmo stream, Minas Gerais, Brazil, and frequency of resistant bacteria in the respective aquatic communities – Hydrobiologia, 394: 5-12.
  • [6] Daubner I. 1967 – Mikrobiologia vody – Slov. Akad. Vied. Press, Bratislava.
  • [7] Dethier M. N. 1992 – Classifying marine and estuarine natural communities: An alternative to the coward in system – J. Nat. Areas, 12: 90-100.
  • [8] Diaz-Ravina M., Bååth E., Frostegard A. 1994 – Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique – Appl. Environ. Microbiol. 60: 2238-2247.
  • [9] Donderski W., Głuchowska M., Wódkowska A. 1997 – Effect of heavy metal ions on neustonic and planktonic bacteria isolated from lake Jeziorak Mały – Pol. J. Environ. Stud. 6: 29-34.
  • [10] Fabiano M., Danovaro R., Magi E., Mazzucotelli A. 1994 – Effects of heavy metals on benthic bacteria in coastal marine sediments: a field result – Mar. Poll. Bull. 28: 18-23.
  • [11] Farrell R. E, Germida J. J., Huang P. M. 1993 – Effects of chemical speciation in growth media on the toxicity of mercury (II) – Appl. Environ. Microbiol. 59: 1507-1514.
  • [12] Ferrer E. B., Stapert E. M., Sokolski W. T. 1963 – A medium for improved recovery of bacteria from water – Can. J. Microbiol. 9: 420-422.
  • [13] Foster T. J. 1983 – Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria – Microbiol. Rev. 47: 361-409.
  • [14] Garrett W. D. 1965 – Collection of slick-forming materials from the sea surface – Limnol. Oceanogr. 10: 602-605.
  • [15] Harvey G., Burzell L. A. 1972 – A simple microlayer method for small samples – Limnol. Oceanogr. 17: 156-157.
  • [16] Hermansson M., Lindberg C. 1994 – Gene transfer in the marine environment – FEMS Microbiol. Ecol. 15: 47-54.
  • [17] Hermansson M., Jones G. W., Kjelleberg S. 1987 – Frequency of antibiotic and heavy metal resistance, pigmentation and plasmids in bacteria of the marine air-water interface – Appl. Environ. Microbiol. 53: 2338-2342.
  • [18] Kim S-J. 1985 – Effect of heavy metals on natural populations of bacteria from surface microlayers and subsurface water – Mar. Ecol. Prog. Ser. 26: 203-206.
  • [19] Konopka A., Zakharova T. 1999 – Quantification of bacterial lead resistance via activity assays – J. Microbiol. Meth. 37: 17-22.
  • [20] Lion L. W., Harvey R. W., Leckie J. O. 1982 – Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh – Mar. Chem. 11: 235-244.
  • [21] Lopez-Amoros R., Vives-Rego J., Gracia-Lara J. 1997– Exogenous isolation of Hgr plasmids from coastal Mediterranean waters and their effect on growth and survival of Escherichia coli in sea water – Microbios, 92: 109-112.
  • [22] Martinez J., Soto Y., Vives-Rego J., Bianchi M. 1991 – Toxicity of Cu, Ni and alkylbenzene sulfonate on the naturally occurring bacteria in the Rhone river plume – Environ. Toxicol. Chem. 10: 641-647.
  • [23] Mills A. L., Colwell R. R. 1977 – Microbial effects of metal ions in Chespeake Bay water and sediment – Bull. Environ. Contam. Toxical. 18: 99-103.
  • [24] Mudryk Z. 1987 – Some physiological properties of water bacteria isolated from the estuarine lake Gardno – Stud. Mat. Oceanol. 51: 269-282.
  • [25] Mudryk Z., Donderski W., Skórczewski P., Walczak M. 2000 – Effect of some heavy metals on neustonic and planktonic bacteria isolated from the Deep of Gdańsk – Oceanol. Stud. 29: 89-99.
  • [26] Nair S., Chandramohan D., Bharathi P. A. 1992 – Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics – Wat. Res. 26: 431-434.
  • [27] Niewolak S., Kopij H., Chomutowska H. 1996 – Influence of some heavy metals on the survival of heterotrophic bacteria in bottom sediments of eutrophic lake – Pol. J. Environ. Stud. 5: 21-27.
  • [28] Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. 1997 – Distribution, diversity and evolution on the bacterial mercury resistance mer operon – FEMS Microbiol. Rev. 9: 239-262.
  • [29] Ostrovskii D. N., Lysak E. I., Demina G. P., Binyukov V. I. 2000 – Interaction of bacteria with mercuric compounds – Microbiology, 69: 516-523.
  • [30] Perez-Garcia A., Codina J. C., Cazorola F. M., de Vicente A. 1993 – Rapid respirometric toxicity test: sensitivity to metals – Bull. Environ. Contam. Toxicol. 50: 703-708.
  • [31] Piotrowicz S. R., Ray B. J., Hoffman G. L., Duce R. A. 1972 – Trace metal enrichment in the sea-surface microlayer – J. Geophys. Res. 77: 5243-5254.
  • [32] Ranjard L., Richaume A., Jocteur-Monrozier L., Nazaret S. 1997 – Response of soil bacteria to Hg (II) in relation to soil characteristics and cell location – FEMS Microbiol. Ecol. 24: 321-331.
  • [33] Reyes N. S., Frischer M. E., Sobecky P. A. 1999 – Characterization of mercury resistance mechanisms in marine sediment microbial communities – FEMS Microbiol. Ecol. 30: 273-284.
  • [34] Williams P. M., Carlucci A. F., Henrichs S. M., van Vleet E. S., Horrigan S. G., Redi F. M., Robertson K. J. 1986 – Chemical and microbiological studies of sea-surface film in the southern Gulf of California and the west coast of Baja California – Mar. Chem. 19: 7-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0833-3333
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.