PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Carbon biogeochemical cycle across the Permian-Triassic boundary strata and its implications : isotope record from the Changhsingian Stage at Meishan, south China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The new dataset of the carbon and oxygen stable isotope values across the sedimentary sequence of the Changhsingian Stage at Meishan, south China documents the carbon biogeochemical cycle in detail. The cycle began with storage of organic carbon (C[org]), mainly as biogenic carbon dioxide in clathrates, and carbon dioxide from anaerobic methane oxidation (AMO) in the stratified sea water masses, which is reflected by a rapid increase in the [delta izotop C13] values. Storage of C[org] demanded a large biomass productivity, and thus consumption of a vast amount of carbon dioxide, which would have been associated with climatic oceanic water cooling. Oceanic water cooling and enhanced volcanism is actually reflected by a gradual increase in the {delta izotop O18] values. The longterm stasis between C[org] burial and reburial was then achieved, as rflected by the stable course of the [delta izotop C13] curve. At the same time, cool water circulation caused a continuous increase in the [delta izotop O18] values. At the end of the cycle, several factors including earthquakes and other tectonic movements marking the onset of major Siberian volcanism, together with a local temperature increase resulted in a change of ocean circulation, caused mixing of stratified sea water masses. This was followed by destruction of the existing clathrates, degassing of carbon dioxide, oxidation of organic matter, and a rapid decrease in the oceanic [delta izotop C13] values. Apart from the carbon dioxide that was released to the atmosphere, part of the methane must have been oxidised, creating additional carbon dioxide as well as vater vapour. The carbon dioxide and water vapour must have initiated a greenhouse effect and caused thermal stratification of seawater which, in turn, initiated reconstruction of the redox in the Early Triassic. The end of the cycle was associated with the end-Permian mass extinction. The global warming associated with methane release from clathrates led to collapse of terrestrial plants. At the same time, the mixing event brought methane and organic matter for oxidation, which caused massive consumption of oxygen and extinction of the terrestrial fauna. In the marine environment, the mixing event brought water masses rich in carbon dioxide, as well as excess hydrogen ions from anoxic zones, onto shelf areas, causing a collapse of marine biota. The carbon biogeochemical cycle of the Changhsingian indicated by the initial rapid rise, long-term stasis, and final rapid drop in [delta izotop C13] values, seems to be a rule for a pattern of Phanerozoic [delta izotop C13] values in sedimentary carbonates. This suggest that a process of methane storage and release may have had a bearing on major geochemical perturbations throughout Earth history. However, methane storage, with or without the association of carbon dioxide and other forms of C[org] and its subsequent release, could have occurred in many different scenarios throughout the Phanerozoic. Therefore, the end of the carbon cycles may be associated with mass extinction only when release of methane is coupled with other phenomena, which is the case with the end-Permian event.
Rocznik
Strony
167--179
Opis fizyczny
Bibliogr. 94 poz., il.
Twórcy
  • Instytut Paleobiologii, Polska Akademia Nauk, Warszawa, Poland
  • Instytut Paleobiologii, Polska Akademia Nauk, Warszawa, Poland
  • Instytut Paleobiologii, Polska Akademia Nauk, Warszawa, Poland
  • Nanjing Institute of Geology and Paleontology, Academia Sinica, Nanjing, People's Republic of China
Bibliografia
  • 1. AGER, D.V. 1993. The Nature of the Stratigraphical Record, 151 pp. Wiley and Sons; Chichester.
  • 2. BAUD, A., MAGARITZ, M. & HOLSER, W.T. 1989. Permian-Triassic of Tethys: Carbon isotope studies. Geologische Rundschau,78, 649-677.
  • 3. BECKER, L., POREDA, R.J., HUNT, A.G., BUNCK, T.E. & RAMPINO,M. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291, 1530-1533.
  • 4. BERNER, R.A. 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. National Academy of Sciences Proceedings, 99, 4172-4177.
  • 5. BEAUCHAMP, B. & BAUD, A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of termohalline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184, 37-63.
  • 6. BERRY, W. B.N. & WILDE, P. 1978. Progressive ventilation of the oceans - an explanation for the distribution of the Lower Paleozoic black shales. American Journal of Science, 278, 257-275.
  • 7. BOWRING, S.A., ERWIN, D.H., JIN, Y.G., MARTIN, M.W.,DAVIDEK, K. & WANG, W. 1998. U/Pb Zircon Geochronology and Tempo of the End-Permian Mass Extincition. Science, 280, 1039-1045.
  • 8. CAO, C-Q. & SHANG, Q-H. 1998. Microstratigraphy of Permo-Triassic transitional sequence of the Meishan Section, Zhejiang, China. Palaeoworld, 9, 147-152.
  • 9. CHEN, J-S., SHAO, M-R., HUO, W-G. & YAO, Y-Y. 1984. Carbon isotope of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang. Science Geology Sinica, 1, 88-93. [In Chinese]
  • 10. CLAYPOOL, G.E. & KAPLAN, I.R. 1974. The origin and distribution of methane in marine sediments. In: I.R. KAPLAN (Ed.).Natural Gases in Marine Sediments, pp. 99-139. Plenum Press; New York.
  • 11. COLEMAN, M.L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London, A 315, 39-56.
  • 12. DE WIT, M.J., GOSH, J.G., DE VILLIERS, S., RAKOTOSOLOFO, N., ALEXANDER, J., TRIPATHI, A. & LOOY, C. 2002. Multiple organic carbon isotope reversals across the Permo-Triassic boundary of teresstrial Gondwana sequence: Clues to extinction pattern and delayed ecosystem recovery. Journal of Geology, 110, 227-246.
  • 13. DICKENS, G. 2001. On the fate of past gas: What happens to methane released from a bacterially mediated gas hydrate capacitor. Geochemistry, Geophysics, Geosystems, 2, paper 2000GC000131.
  • 14. DICKENS, G.R., PAULL, C.K. & WALLACE, P. 1997. Direct measurement of in situ methane quantities in a large hydratere servoir. Nature, 385, 426-428.
  • 15. EPSTEIN, S. & MAEYDA, T.R. 1953. Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213-224.
  • 16. EPSTEIN, S., BUCHSBAUM, R., LOWENSTAM, H.A. & UREY, H.C.1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315-1326.
  • 17. ERWIN, D.H. 1993. The Great Paleozoic Crisis, 327 pp. Columbia University Press; New York.
  • 18. ESHET, Y., RAMPINO, M. & VISSCHER, H. 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23, 967-970.
  • 19. GAETANI, M., 2000. GSSP for the base of Triassic formally accepted at Meishan. Permophiles, 36, 42.
  • 20. GOLDHABER, M.B. & KAPLAN, I.R. 1974. The sulfur cycle. In: GOLDBERG, E.D. (Ed.), The Sea, v. 5, Marine Chemistry, pp. 569-655. Wiley and Sons; New York.
  • 21. GRUSZCZYŃSKI, M., HAŁAS, S., HOFFMAN, A. & MAŁKOWSKI, K.1989. A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permo/Triassic transition. Nature,337, 64-68.
  • 22. GRUSZCZYŃSKI, M., HOFFMAN, A., MAŁKOWSKI, K. & VEIZER, J.1992. Seawater strontium isotopic perturbation at the Permian-Triassic boundary, west Spitsbergen, and its implications for the interpretation of strontium isotopic data. Geology, 20, 779-782.
  • 23. GRUSZCZYŃSKI, M., HAŁAS, S., HOFFMAN, A., MAŁKOWSKI, K., ZAWIDZKA, K. & ZENGY. 1990. Carbon isotopic drop across the Permian-Triassic boundary in SE Sichuan, China. Neues Jahrbuch fur Geologische Paläontologische Monatshäfte, (10), 600-606.
  • 24. HALLAM, A. & WIGNALL, P.B. 1997. Mass extinctions and their aftermath, 320 pp. Oxford University Press; Oxford.
  • 25. HARLAND,W.B. & HEROD, K.N. 1975. Glaciations through time. In: A. E. WRIGHT& F. MOSLEY (Eds). Ice Ages: Ancient and Modern, pp. 189-216, Geological Journal, Special Issue, 6; Liverpool.
  • 26. HESSELBO, S.P., GROCKE, D.R., JENKYNS, H.C., BESERRUM, C.J.,FARRIMOND, P., MORGANS BELL, H.S. & GREEY, O.R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406, 392-395.
  • 27. HOFFMAN, A., GRUSZCZYŃSKI, M. & MAŁKOWSKI, K. 1990.Oceanic delta-13-Carbon values as indicators of atmospheric oxygen depletion. Modern Geology, 14, 211-221.
  • 28. HOFFMAN, A., GRUSZCZYŃSKI, M. & MAŁKOWSKI, K. 1991. On the interrelationship between temporal trends in δ13C, δ18O,and δ34S in the world ocean. Journal of Geology, 99, 355-370.
  • 29. HOFFMAN, A., GRUSZCZYŃSKI, M., MAŁKOWSKI, K. & SZANIAWSKI, H. 1998. Should the Permian/Triassic boundary be definied by the carbon isotope shift? Acta Geologica Polonica, 48, 141-148.
  • 30. HOLLAND, H.D. 1978. The Chemistry of the Atmosphere and Oceans, 351 pp. Wiley; New York.
  • 31. HOLSER, W. T. 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: H.D. HOLLAND & A.F. TRENDALL (Eds), Patterns of Change in Earth Evolution, pp.123-143, Springer Verlag; Berlin.
  • 32. HOTINSKI, R.M., BICE, K.L., KUMP, L.R., NAJJAR, R.G. & ARTHUR, M.A. 2001. Ocean stagnation and end-Permian anoxia. Geology, 29, 7-10.
  • 33. HUDSON, J.D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society of London, 133, 637-660.
  • 34. IMBRIE, J. & IMBRIE, K.P. 1986. Ice Ages Solving The Mistery, 325 pp. Harvard University Press; Cambridge, Massachusetts and London.
  • 35. IRWIN, H. 1980. Early diagenetic carbonate precipitation and pore fluid migration from the Kimmeridge Clay of Dorset. Sedimentology, 27, 577-591.
  • 36. IRWIN, H., CURTIS, C. & COLEMAN, M.L. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, 209-213.
  • 37. ISOZAKI, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost sea. Science, 276, 235-238.
  • 38. JIN, Y. G., WANG, Y., WANG, W., SHANG, Q.H., CAO, C.Q. &ERWIN, D.H. 2000. Pattern of Marine Mass Extinction Near the Permian-Triassic Boundary in South China. Science, 289, 432-436.
  • 39. KAIHO, K., KAJIWARA, Y., NAKANO, T., MIURA, Y., KAWAHATA, H.,TAZAKI, K., UESHIMA, M., CHEN, Z. & SHI, G.R. 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29, 815-818
  • 40. KNOLL, A.H., BAMBACH, R.K., CANFIELD, D.E. & GROTZINGER,J.P. 1996. Comparative earth history and Late Permian mass extinction. Science, 273, 452-457.
  • 41. KOZUR, H., RAMORS, A., WANG, C-Y. & ZAKHAROV, Y. 1996. The importance of Hindeodus parvus (Conodonta) for the definition of the Permian-Triassic boundary and evaluation of the proposed section for a global stratotype section and point (GSSP) for the base of the Triassic. Geologija, 37/38,173-213.
  • 42. KRULL, E.S. & RETALLACK, G.J. 2000. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence from methane release. Geological Society of America Bulletin, 112, 1459-1472.
  • 43. KRULL, E.S., RETALLACK, G.J., CAMPBELL, H.J. & LYON, G.L. 2000. δ13Corg chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand: Evidence for high-latituidnal methane release. New Zealand Journal of Geology and Geophysics, 43, 21-32.
  • 44. LOOY, C.V., BRUGMAN, W.A., DILCHER, D.L. & VISSCHER, H. 1999. The delayed resurgence of equatorial forests after the Permian-Triassic ecological crisis. National Academy of Sciences Proceedings, 96, 13857-13862.
  • 45. MAŁKOWSKI, K., GRUSZCZYŃSKI, M., HOFFMAN, A. & HAŁAS, S.1989. Oceanic stable isotope composition and a scenario for the Permo-Triassic crisis. Historical Biology,2, 289-309.
  • 46. MAŁKOWSKI, K., GRUSZCZŃSKI, M. & HOFFMAN, A. 1991. A facies geological test of stable isotope interpretation of the Upper Permian depositional environment in West Spitsbergen. Terra Nova, 3, 631-637.
  • 47. MARSHALL, J.D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143-160.
  • 48. MCDONALD, G.J. 1992. Clathrates. In: Encyclopedia of Earth System Science, 1, pp. 475-484, Academic Press; New York.
  • 49. METCALFE, I., NICOLL, R.S., MUNDIL, R., FOSTER, C., GLEN, J., LYONS, J., WANG, X-F., WANG, C-Y., RENNE, P.R., BLACK, L.,QU, X. & MAO, X-D. 2001. The Permian- Triassic boundary& Mass Extinction in China. Proceedings of the International symposium on the Global Stratotype of the Permian-Triassic boundary and the Palaeozoic- Mesozoic events. Changxing, Zhejiang, China, August 10-13. 2001, 68-72.
  • 50. MILLER, S.L. 1974. The nature and occurrence of clathrate hydrates. In: I.R. KAPLAN (Ed.), Natural Gases in Marine Sediments, pp. 151-177, Plenum Press; New York.
  • 51. MORANTE, R. 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, 11, 289-310.
  • 52. MUEHLENBACHS, K. 1986. Alternation of the oceanic crust and the 18O history of seawater. In: J.W. VALLEY, K., H.P. TALYOR & J.R. O’NEIL (Eds), Stable Isotopes in High Temperature Geological Processes, pp. 425-444, Review of Mineralogy, 16. BookCrafters, Incorporation; Ontario.
  • 53. MUEHLENBACHS, K. & CLAYTON, R.N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research, 81, 4365-4369.
  • 54. NICOLL, R.S. & METCALFE, I. 2001. Conodont biostratigraphy of the Permian-Triassic boundary interval in the Meishan and Shangsi sections, China. Proceedings of the International symposium on the Global Stratotype of the Permian-Triassic boundary and the Palaeozoic-Mesozoic events. Changxing, Zhejiang, China, August 10-13.2001, 77-79.
  • 55. NISSENBAUM, A., PRESLEY, B.J. & KAPLAN, I.R. 1972. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia -I. Chemical and isotopic changes in major components of interstitial water. Geochimica et Cosmochimica Acta, 36,1007-1027.
  • 56. POPP, B.N., ANDERSON, T.F. & SANDBERG, P.A. 1986. Brachipods as indicator of original compositions in some Paleozoic lime-stones. Geological Society of America Bulletin, 97, 1262-1269.
  • 57. PYTKOWICZ, D.H. 1983. Equilibria, Nonequilibria, and Natural Waters (vol. 1), 351 pp. Wiley and Sons; New York.
  • 58. RENNE, P.R., ZICHAO, Z., RICHARDS, M.A., BLACK, M.T. & BASU, A.R. 1995. Synchrony and causal relations between Permian-Triassic boundary crisis and Siberian flood basalt volcanism. Science, 269, 1413-1416.
  • 59. RETALLACK, G.J. 1999. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosol in the Sydney Basin, Australia. Geological Society of America Bulletin, 111, 52-70.
  • 60. SEPKOSKI, J.J. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society of London, 146, 7-19.
  • 61. SHELDON, N.D. & RETALLACK, G.J. 2002. Low oxygen levels in earliest Triassic soils. Geology, 30, 919-922.
  • 62. SHENG, J-Z., CHEN, C-Z., WANG, Y-G., RUI, L., LIAO, Z-T.,BANDO, Y., ISCHI,K-I., NAKAZAWA, K. & NAKAMURA, K. 1984. Permian Triassic boundary in Middle and Eastern Tethys. Journal of the Faculty of Science, Hokkaido University, IV 21, 111-181.
  • 63. SMITH, R.M.H. & WARD, P.D. 2001. Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geology, 29, 1147-1150.
  • 64. SPITZY, A. & DEGENS, E.T. 1985. Modeling stable isotope fluctuations through geologic time. Mitteilungen Geologisches-Paläontologisches Institut, Universität Hamburg, 59, 155-166.
  • 65. SUNDQUIST, E.T. 1985. Geological perspectives on carbon dioxide and the carbon cycle. In: E.T. SUNDQUIST & W.S. BROECKER (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations, Archaean to Present, pp. 1-59. Geophysical Monographs Series, 32. American Geophysical Union; Washington.
  • 66. TWITCHETT, R.J., LOOY, C.V., MORANTE, R., VISSCHER, H. & WIGNALL, P.B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 29, 351-354.
  • 67. VEIZER, J., FRITZ, P. & JONES, P. 1986. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans. Geochimica et Cosmochimica Acta, 50, 1679-1696.
  • 68. VEIZER, J., ALA, D., AZMY, K., BRUCKSCHEN, P., BUHL, D., BRUHN,F., CARDEN, G.A.F., DIENER, A., EBNETH, S., GODDERIS, Y., JASPER, T., KORTE, C., PAWELLEK, F., PODLAHA, O. & STRAUSS,H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59-88.
  • 69. VENKATESAN, T.R., KUMAR, A., GOPALAU, K. & AL’MUKHAMEDOV, A.I. 1997. 40Ar-39Ar age of Siberian basaltic volcanism. Chemical Geology, 138, 303-310.
  • 70. VISSCHER, H., BRINKHUIS, Y., DILHER, D.L., ELSIK, W.C., ESHET,Y., LOOY, C.V., RAMPINO, M.R. & TRAVERSE, A. 2001. The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. National Academy of Sciences Proceedings, 93, 2135-2158.
  • 71. WANG, C-Y. 1994a. Eventostratigraphic boundary and biostratigraphic boundary of the Permian-Triassic in South China. Journal of Stratigraphy, 18, 121-145. [In Chinese with English abstract]
  • 72. WANG, C-Y. 1994b. A conodont based high-resolution eventostratigraphy and biostratigraphy for the Permian-Triassic boundaries in South China. In: Y-G. JIN & al. (Eds), Permian Stratigraphy, Environments and Resources, vol. 1. Palaeontology and Stratigraphy, pp. 234-247. Palaeoworld, 4. Nanjing University Press; Nanjing.
  • 73. WANG, C-Y. 1995. Conodonts of Permian-Triassic boundary beds and biostratigraphic boundary. Acta Palaeotologica Sinica,34,129-151. [In Chinese with English abstract]
  • 74. WANG, C-Y. 1996. Conodont evolutionary lineage and zonation for the latest Permian and the earliest Triassic. Permophiles, 26, 30-37.
  • 75. WANG, C-Y. 1999. Conodont Mass Extinction and Recovery from Permian-Triassic Boundary Beds in the Meishan section, Zhejiang, China. Studies on Conodonts. Proceedings of the Seventh European Conodont Symposium Bologna-Modena,1998. Bolletino della Societa’ Paleontologica Italiana, 37 (2-3), 489-495.
  • 76. WANG, C-Y., KOZUR, H., ISHIGA, H., KOTLYOR, G.V., RANORS, A.,WAND, Z-H.& ZACHAROV, Y. 1996. Permian-Triassic boundary at Meishan of Chanxing County, Zhejiang Province, China - A proposal on the Global -stratotype Section and Point (GSSP) for the base of Triassic. Acta Micropaleotologica Sinica, 13, 109-124.
  • 77. WANG, K., GELDSETZER, H.H.J. & KROUSE, H. R. 1994. Permian-Triassic extinction: Organic d13C evidence from British Columbia. Geology, 22, 580-584.
  • 78. WANG, Y-G. 1984. Earliest Triassic ammonoid fauna from Jiangsu and Zhejiang and its bearing on the definition of Permo-Triassic boundary. Acta Palaeotologica Sinica, 23, 257-269. [In Chinese with English abstract]
  • 79. WARD, P.D., MONTGOMERY, D.R. & SMITH, R. 2000. Altered river morphology in South Africa related to the Permian-Triassic extinction. Science, 289, 740-743.
  • 80. WEISERT, H. 2000. Deciphering methane’s fingerprint. Nature, 406, 356-357.
  • 81. WIGNALL, P.B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1-33.
  • 82. WIGNALL, P.B. & HALLAM, A. 1993. Greisbachian (Earliest Triassic) paleoenvironmental changes in the Salt Range, Pakistan and suotheast China and their bearing on the Permo-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 102, 215-237.
  • 83. WIGNALL, P.B. & TWITCHETT, R.J. 1996. Oceanic anoxia and the end-Permian mass extinction. Science, 272, 1155-1158.
  • 84. WIGNALL, P.B., KOZUR, H. & HALLAM, A. 1996. The timing of palaeoenvironmental changes at the Permo-Triassic (P/Tr) boundary using conodont biostratigraphy. Historical Biology,12, 39-62.
  • 85. WORDEN, D.H., SMALLEY, P.C. & FALLICK, A.E. 1997. Sulfur cycle in buried evaporites. Geology, 25, 643-646.
  • 86. XU, D-Y. & YAN, Z. 1993. Carbon isotope and iridium event markers near the Permian/Triassic boundary in Meishan section, Zhejiang Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology,104, 171-176.
  • 87. YAN, Z., XU, D-Y., YE, L -F. & LIU, R-M. 1991. Carbon isotope perturbation near the Permian-Triassic boundary at Meishan of Changxing, Zhejiang Province. Palaeoworld,1, 113-119. [In Chinese]
  • 88. YIN, H-F., WU, S-B., DING, M-H., ZHANG, K-X., TONG, J-N. &YANG, F-Q. 1994. The Meishan section candidate of the global stratotype section and point (GSSP) of the Permian-Triassic boundary (PTB). Albertiana, 14, 15-30.
  • 89. YIN, H-F. & ZHANG, K-X. 1996. Eventostratigraphy of the Permian-Triassic boundary at Meishan section, South China. In: H-F. YIN(Ed.), The Palaeozoic-Mesozoic boundary, candidates of Global Stratoype Section and Point of the Permian-Triassic Boundary, pp. 84-96. China University of Geosciences Press; Wuhan.
  • 90. YIN, H-F., WU, S-B., DING, M-H., ZHANG, K-X., TONG, J-N.,YANG, F-Q. & LAI, X-L. 1996. The Meishan section, candidate of the global stratotype section and point of Permian-Triassic boundary. In: H-F. YIN (Ed.), The Palaeozoic-Mesozoic boundary, candidates of Global Stratoype Section and Point of the Permian-Triassic Boundary, pp. 31-48. China University of Geosciences Press; Wuhan.
  • 91. YIN, H-F., ZHANG, K-X., TONG, J-N., YANG, Z-Y. & WU, S-B.2001. The Global Stratotype Section and Point (GSSP) of the Permian- Triassic Boundary. Proceedings of the International symposium on the Global Stratotype of the Permian-Triassic boundary and the Palaeozoic- Mesozoic events. Changxing, Zhejiang, China, August 10-13.2001, 1-19.
  • 92. ZHANG, K-X. 1984. New data of conodont fauna from Otoceras bed in Baoquing section of Changxing, Zhejiang Province. Earth Science-Journal of China Geology University, 3, 38; 104. [In Chinese]
  • 93. ZHANG, K-X., DING, M-H., LAI, X-L. & LIU, J-H. 1996. Conodont sequences of the Permian-Triassic boundary strata at Meishan section, South China. In: H-F. YIN (Ed.), The Palaeozoic-Mesozoic boundary, candidates of Global Stratoype Section and Point of the Permian-Triassic Boundary, pp. 57-64. China University of Geosciences Press; Wuhan.
  • 94. ZHU, Z-L., WANG, Y. & WANG, X-D. 2000. Route 6. Nanjing-Changxing-Nanjing. In: X. CHEN, H-F. WANG & C.H.HOLLAND (Eds), Geological History of the Nanjing Hills – A Guide for Overseas Geologists, pp. 139-162. Najning Institute of Geology and Palaeontology, Chinese Academy of Sciences; in conjunction with Centre for Ecostratigraphy and Palaeobiology. School of Earth Sciences, Macquarie University, Australia; Najning.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0833-3272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.