PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A group of integrated hydrological and sedimentary qualitative models is introduced for evaporite and selenite (coarsecrystalline gypsum) deposition in ancient drawdown saline basins (salinas). The general model of a salina basin as a framework for intrabasinal models of selenite and gypsum microbialite (a variety of fine-grained gypsum) sedimentation is given. Selected aspects of evaporite, selenite and gypsum microbialite deposition are reviewed and discussed. A salina basin is a depression supplied with marine water by seepage and occasional surface inflows. The intrabasinal environments comprise: (i) ephemeral saline pans, evaporite shoals, and the peculiar majanna environment (recognised in the Recent MacLeod salina, Australia); and (ii) perennial saline pans. The sedimentary dynamic of these environments is controlled largely by seasonal brine level and groundwater table level fluctuations. The perennial saline pans are characterised by three basic hydrological states: (i) meromixis - with a permanent pycnocline, (ii) monomixis to polymixis - with a seasonal or periodic pycnocline, and (iii) polymixis - without a constant pycnocline. Monomictic saline pans showing stratification in the wet period (during seasonal highstand) and mixis in the dry period of the year (during seasonal lowstand) are the most significant for subaqueous evaporite and selenite deposition. Evaporite deposition takes place mainly during a mixis period coinciding with a dry season lowstand and increased evaporition. Within intrabasinal environments selenite crusts can be occasionally deposited from permanent brine sheets on evaporite shoals or majanna flats, but are mainly the product of bottom crystallisation in the hypolimnion of the monomictic (and/or polymictic) saline pans. Shallow-brine and deep-brine selenite pans are distinguished from each other on the basic of the relationship of the seasonally fluctuating pycnocline to the bottom of the pan. Selenite deposition in the mixolimnion of a deep meromictic basin is also possible. The qualitative models can be used for sedimentological analyses of ancient selenite-evaporite basins.
Rocznik
Strony
219--249
Opis fizyczny
Bibliogr. 169 poz., rys.
Twórcy
autor
  • Institute of Geology, Warsaw University, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
  • 1. ALADIN, N.V., FILIPPOV, A.A., PLOTNIKOV, I.S., ORLOVA, M.I. & WILLIAMS, W.D. 1998. Changes in the structure and function of biological communities in the Aral Sea, with particular reference to the northern part (Small Aral Sea), 1985-1994: A review. International Journal of Salt Lake Research, 7, 301-343.
  • 2. ALI, G.H. 1999. Phytoplankton activities in hypersaline, anoxic conditions. I. Dynamics of phytoplankton succession in the Solar Lake (Taba, Egypt). Water Science and Technology, 40, 117-125.
  • 3. ANATI, D.A. 1997. The hydrography of a hypersaline lake. In: T.M. NIEMI, Z. BEN-AVRAHAM & J.R. GAT (Eds), The Dead Sea: the lake and its setting. Oxford Monographs on Geology and Geophysics, 36, pp. 89-103. Oxford University Press, Inc.; New York.
  • 4. - 1998. Dead Sea water trajectories in the T-S space. Hydrobiologia, 381, 43-49.
  • 5. ANATI, D.A., GAVRIELI, I. & OREN, A. 1995. The residual effect of the 1991-93 rainy winters on the Dead Sea stratification. Israel Journal of Earth Sciences, 44, 63-70.
  • 6. ANATI, D.A. & STILLER, M. 1991. The post-1979 thermohaline structure of the Dead Sea and the role of double-diffusive mixing. Limnology and Oceanography, 36, 342-354.
  • 7. ARAKEL, A.V. 1980. Genesis and diagenesis of Holocene evaporitic sediments in Hutt and Leeman Lagoons, Western Australia. Journal of Sedimentary Petrology, 50, 1305-1326.
  • 8. - 1988. Modern halite sedimentation processes and depositional environments, Hutt Lagoon, Western Australia. Geodinamica Acta, 2, 169-184.
  • 9. AREF, M.A.M. 2003a. Classification and depositional environment of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt. Sedimentary Geology, 155, 87-108.
  • 10. - 2003b. Lithofacies characteristics, depositional environment and karstification of the Late Miocene (Messinian) gypsum deposits in the northern Western Desert, Egypt. Sedimentology of Egypt, Journal of the Sedimentological Society of Egypt, 11, 9-27.
  • 11. BĄBEL, M. 1991. Crystallography and genesis of the giant intergrowths of gypsum from the Miocene evaporites of Poland. Archiwum Mineralogiczne, 44, 103-135. Warszawa.
  • 12. - 1999a. Facies and depositional environments of the Nida Gypsum deposits (Middle Miocene, Carpathian Foredeep, southern Poland). Geological Quarterly, 43, 405-428.
  • 13. - 1999b. History of sedimentation of the Nida Gypsum deposits (Middle Miocene, Carpathian Foredeep, southern Poland). Geological Quarterly, 43, 429-447.
  • 14. - 1999c. The roles of calcium deficiency and brine mixing in the origin of Badenian laminated gypsum deposits of Carpathian Foredeep. Biuletyn Państwowego Instytutu Geologicznego, 387, 10-12.
  • 15. - 2002. The largest natural crystal in Poland. Acta Geologica Polonica, 52, 251-267.
  • 16. - 2004 (in press). Badenian evaporite basin of the northern Carpathian Foredeep as a drawdown salina basin. Acta Geologica Polonica, 54.
  • 17. - 2004a (in press). Event stratigraphy of the Badenian selenite evaporites (Middle Miocene) of the northern Carpathian Foredeep. Acta Geologica Polonica, 54.
  • 18. - 2004b (in press). Gypsum facies and sedimentary evolution of the Badenian evaporite basin of the northern Carpathian Foredeep. Acta Geologica Polonica, 54.
  • 19. BORCHERT, H. & MUIR, R.O. 1964. Salt deposits. The origin, metamorphism and deformation of evaporites, pp. 1-338. D. Van Nostrand Company, Ltd.; London.
  • 20. BOWLER, J.M. & TELLER, J.T. 1986. Quaternary evaporites and hydrological changes, Lake Tyrrell, north-west Victoria. Australian Journal of Earth Sciences, 33, 43-63.
  • 21. BRANTLEY, S.L., CREREAR, D.A., MØLLER, N.E. & WEARE, J.H. 1984. Geochemistry of a modern marine evaporite: Bocana de Virrilá, Peru. Journal of Sedimentary Petrology, 54, 447-462.
  • 22. BURKE, C.M. & KNOTT, B. 1997. Homeostatic interactions between the benthic microbial communities and the waters of a hypersaline lake, Lake Hayward, Western Australia. Marine and Freshwater Research, 48, 623-631.
  • 23. BURNE, R.V. & MOORE, L.S. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2, 241-254.
  • 24. COHEN, Y., KRUMBEIN, W.E., GOLDBERG, M. & SHILO, M. 1977. Solar Lake (Sinai). 1. Physical and chemical limnology. Limnology and Oceanography, 22, 597-608.
  • 25. CORNÉE, A. 1984. Étude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparison avec les marais salants de Salin-de-Giraud (Sud de la France). Revista d’Investigacions Geologiques, 38-39, 109-122.
  • 26. - 1988. Productivité microbienne, benthique et planctonique, dans les milieux hypersalés actuels: une revue. Mémoires du Muséum National d’Histoire Naturelle, Sér. C, Sciences de la Terre, 55, 19-42.
  • 27. CORNÉE, A., DICKMAN, M. & BUSSON, G. 1992. Laminated cyanobacterial mats in sediments of solar salt works: some sedimentological implications. Sedimentology, 39, 599-612.
  • 28. CORSELLI, C. & AGHIB, F.S. 1987. Brine formation and gypsum precipitation in the Bannock Basin, Eastern Mediterranean. Marine Geology, 75, 185-199.
  • 29. DARGAM, R.M. 1995. Geochemistry of waters and brines from the Salinas Grandes basin, Córdoba, Argentina. I. Geomorphology and hydrochemical characteristics. International Journal of Salt Lake Research, 3, 137-158.
  • 30. DENISON, R.E., KIRKLAND, D.W. & EVANS, R. 1998. Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds. Journal of Geology, 106, 1-17.
  • 31. DRONKERT, H. 1985. Evaporite models and sedimentology of Messinian and Recent evaporites. GUA Papers of Geology, Ser. 1, No. 24, 1-283. Utrecht.
  • 32. DUAN, Z. & HU, W. 2001. The accumulation of potash in a continental basin: The example of the Qarhan Saline Lake, Qaidam Basin, West China. European Journal of Mineralogy, 13, 1223-1233.
  • 33. DULAU, N. & TRAUTH, N. 1982. Etude des dépôts superficiels des marais salants de Salin de Giraud. Géologie Méditerranéenne, 9, 501-520.
  • 34. ECKSTEIN, Y. 1970. Physicochemical limnology and geology of a meromictic pond on the Red Sea shore. Limnology and Oceanography, 15, 363-372.
  • 35. EHRLICH, A. & DOR, I. 1985. Photosynthetic microorganisms of the Gavish Sabkha. In: G.M. FRIEDMAN & W.E. KRUMBEIN (Eds), Hypersaline ecosystems; the Gavish Sabkha. Ecological Studies, Analysis and Synthesis, 53, 296-321. Springer; Berlin.
  • 36. EUGSTER, H.P. & HARDIE, L.A. 1978a. Some further thoughts on the depositional environment of the Solfifera Series of Sicily. Memorie della Societá Geologica Italiana, 16 [for 1976], 29-38.
  • 37. EUGSTER, H.P. & HARDIE, L.A. 1978b. Saline lakes. In: A. LERMAN (Ed.), Lakes - chemistry, geology, physics; pp. 237-293. Springer; New York.
  • 38. FEDOROV, Y.A., GRINENKO, V.A., MINEEV, S.D., USTINOV, V.I. & PANTELEEV, G.P. 1996. Stable isotopes of S, H, and O and man-affected evolution of the Aral Sea. Geochemistry International, 34, 132-142.
  • 39. FENCHEL, T., KING, G.M. & BLACKBURN, T.H. 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling (2 ed.), pp. 1-307. Academic Press; San Diego.
  • 40. FORNARI, M., RISACHER, F. & FÉRAUD, G. 2001. Dating of paleolakes in the central Altiplano of Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 269-282.
  • 41. FERSMAN, A.J. 1919. On mineralogical and geological investigations of the Saki lake. In: D.S. BELYANKIN (Ed.), Academician A. J. Fersman, Collected works, v. 1, pp. 809-822. Izdatelstvo Akademii Nauk USSR; Moscow, 1952. [In Russian]
  • 42. FRIEDMAN, G.M., AMIEL, A.J., BRAUN, M. & MILLER, D.S. 1973. Generation of carbonate particles and laminites in algal mats - example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea. The American Association of Petroleum Geologists Bulletin, 57, 541-557.
  • 43. FRIEDMAN, G.M., SNEH, A. & OWEN, R.W. 1985. The Ras Muhammad Pool: implications for the Gavish Sabkha. In: G.M. FRIEDMAN & W.E. KRUMBEIN (Eds), Hypersaline ecosystems; the Gavish Sabkha. Ecological Studies, Analysis and Synthesis, 53, 218-237. Springer; Berlin.
  • 44. FULLER, J.G.C.M. & PORTER, J.W. 1969. Evaporite formation with petroleum reservoirs in Devonian and Mississippian of Alberta, Saskatchewan, and North Dakota. The American Association of Petroleum Geologists Bulletin, 53, 909-926.
  • 45. GANOR, J. & KATZ, A. 1989. The geochemical evolution of halite structures in hypersaline lakes: the Dead Sea, Israel. Limnology and Oceanography, 34, 1214-1223.
  • 46. GARCIA-PICHEL, F., KÜHL, M., NÜBEL, U. & MUYZER, G. 1999. Salinity dependent limitation of photosynthesis and oxygen exchange in microbial mats. Journal of Phycology, 35, 227-238.
  • 47. GARCIA-PICHEL, F., NÜBEL, U. & MUYZER, G. 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archives of Microbiology, 169, 469-482.
  • 48. GAVISH, E. 1980. Recent sabkhas marginal to the southern coast of Sinai, Red Sea. In: A. NISSENBAUM (Ed.), Hypersaline brines and evaporitic environments. Developments in Sedimentology, 28, 233-251. Elsevier; Amsterdam.
  • 49. GAVISH, E., KRUMBEIN, W.E. & HALEVY, J. 1985. Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system in the Gavish Sabkha. In: G.M. FRIEDMAN & W.E. KRUMBEIN (Eds), Hypersaline ecosystems; the Gavish Sabkha. Ecological Studies, Analysis and Synthesis, 53, 186-217. Springer; Berlin.
  • 50. GEISLER-CUSSEY, D. 1986. Approche sédimentologique et géochimique des mécanismes générateurs de formations évaporitiques actuelles et fossiles. Marais salants de Camargue et du Levant espagnol, Messinien méditerranéen et Trias lorrain. Sciences de la Terre, Mémoires, 48, 1-268. Nancy.
  • 51. - 1997. Modern depositional facies developed in evaporative environments (marine, mixed, and nonmarine). In: G. BUSSON & B.C. SCHREIBER (Eds), Sedimentary deposition in rift and foreland basins in France and Spain (Paleogene and lower Neogene), pp. 3-42. Columbia University Press; New York.
  • 52. GERDES, G., KLENKE, T. & NOFFKE, N. 2000a. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47, 279-308.
  • 53. GERDES, G., KRUMBEIN, W.E. & HOLTKAMP, E. 1985. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: G.M. FRIEDMAN & W.E. KRUMBEIN (Eds), Hypersaline ecosystems; the Gavish Sabkha. Ecological Studies, Analysis and Synthesis, 53, 238-266. Springer; Berlin.
  • 54. GERDES, G., KRUMBEIN, W.E. & NOFFKE, N. 2000b. Evaporite microbial sediments. In: R.E. RIDING & S.M. AWRAMIK (Eds), Microbial sediments, pp. 196-208. Springer; Berlin.
  • 55. GERTMAN, I., ANATI, D.A., HECHT, A., BISHOP, J. & TSEHTIK, Y. 2003. The Dead Sea hydrography from 1992 to 1999. http://marine.ocean.org.il/DS_website/DS_Database.htm
  • 56. GIANI, D., SEELER, J., GIANI, L. & KRUMBEIN, W.E. 1989. Microbial mats and physicochemistry in a saltern in the Bretagne (France) and a laboratory scale saltern model. FEMS Microbiology Ecology, 62, 151-162.
  • 57. GOODALL, I.G., HARWOOD, G.M., KENDALL, A.C., MCKIE, T. & TUCKER, M. 1992. Discussion on sequence stratigraphy of carbonate-evaporite basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Journal of the Geological Society, London, 149, 1050-1054.
  • 58. GUNATILAKA, A. 1975. Some aspects of the biology and sedimentology of laminated algal mats from Mannar Lagoon, north-west Ceylon. Sedimentary Geology, 14, 275-300.
  • 59. GWYNN, J.W. (Ed.), 1980. Great Salt Lake; a scientific, historical and economic overview. Utah Geological and Mineral Survey, Bulletin, 116, 1-400. Artistic Printing; Salt Lake City.
  • 60. HAMMER, U.T., SHAMESS, J. & HAYNES, R.C. 1983. The distribution and abundance of algae in saline lakes of Saskatchewan. In: U.T. HAMMER (Ed.), Saline lakes. Developments in Hydrobiology, 16, 1-26. Dr W. Junk Publishers; Hague.
  • 61. HANDFORD, C.R. 1991. Marginal marine halite: sabkhas and salinas. In: J.L. MELVIN (Ed.), Evaporites, petroleum and mineral resources. Developments in Sedimentology, 50, 1-66. Elsevier; Amsterdam.
  • 62. HARDIE, L.A. & EUGSTER, H.P. 1971. The depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology, 16, 187-220.
  • 63. HARDIE, L.A., SMOOT, J.P. & EUGSTER, H.P. 1978. Saline lakes and their deposits: a sedimentological approach. In: A.
  • 64. MATTER & M.E. TUCKER (Eds), Modern and ancient lake sediments. Special Publication of the International Association of Sedimentologists, 2, 7-41. Blackwell Scientific Publications; Oxford.
  • 65. HEIM, C., NOWACZYK, N., NEGENDANK, J.F.W., LEROY, S.A.G. & BEN-AVRAHAM, Z. 1997. Near East desertification: evidence from the Dead Sea. Naturwissenschaften, 84, 398-401.
  • 66. HERUT, B., GAVRIELI, I. & HALICZ, L. 1998. Coprecipitation of trace and minor elements in modern authigenic halites from the hypersaline Dead Sea brine. Geochimica et Cosmochimica Acta, 62, 1587-1598.
  • 67. HIGASHINO, M., GANTZER, C.J. & STEFAN, H.G. 2004. Unsteady diffusional mass transfer at the sediment/water interface: Theory and significance for SOD measurement. Water Research, 38, 1-12.
  • 68. HOLLAND, H.D. 1984. The chemical evolution of the atmosphere and oceans, pp. 1-583. Princeton University Press; Princeton, New Jersey.
  • 69. HOLSER, W.T. 1979. Mineralogy of evaporites. In: R.G. BURNS (Ed.), Marine minerals. Reviews in Mineralogy, 6, 211-294. BookCrafters, Inc.; Chelsea, Michigan.
  • 70. HORITA, J., ZIMMERMANN, H. & HOLLAND, H.D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733-3756.
  • 71. HORNE, A.J. & GOLDMAN, C.R. 1994. Limnology (2 ed.), pp. 1-576. McGraw-Hill, Inc.; New York.
  • 72. HUDEC, P.P. & SONNENFELD, P. 1980. Comparison of Caribbean solar ponds with inland solar lakes of British Columbia. In: A. NISSENBAUM (Ed.), Hypersaline brines and evaporitic environments. Developments in Sedimentology, 28, 101-129. Elsevier; Amsterdam.
  • 73. HUTCHINSON, G.E. 1975. A Treatise on limnology, v. 1, part 1. Geography and physics of lakes, pp. 1-540, S1-S10, B1-B66, I1-I37. John Wiley & Sons, Inc.; New York.
  • 74. INGERSON, E. 1968. Deposition and geochemistry work sessions. In: R.B. MATTOX & al. (Eds), Saline deposits. The Geological Society of America, Special Paper, 88, 671-681.
  • 75. IVANOV, V.A., LYUBARTSEVA, S.P., MIKHAILOVA, É.N., SHAPIRO, N.B. & GERTMAN, I. 2002a. Model of the Dead Sea. Simulation of the variability of the thermohaline water structure in 1992-2000. Physical Oceanography, 12, 237-256. [translation of Russian text from Morskoi Gidrofizicheskii Zhurnal, 2002]
  • 76. IVANOV, V.A., LYUBARTSEVA, S.P., MIKHAILOVA, É.N., SHAPIRO, N.B. & SHTEINMAN, B.S. 2002b. Modelling of thermal and oxygen conditions in Lake Kinneret (Israel). Physical Oceanography, 12, 43-53.
  • 77. JAVOR, B.J. 1983. Planktonic standing crop and nutrients in a saltern ecosystem. Limnology and Oceanography, 28, 153-159.
  • 78. - 2002. Industrial microbiology of solar salt production. Journal of Industrial Microbiology & Biotechnology, 28, 42-47.
  • 79. KENDALL, A.C. 1984. Evaporites. In: R.G. WALKER (Ed.), Facies models (2 ed.), Geoscience Canada Reprint Series, No. 1, 259-296. Ainsworth Press Limited; Mitchner, Ontario.
  • 80. - 1992. Evaporites. In: R.G. WALKER & N.P. JAMES (Eds), Facies models - response to sea level change, pp. 375-409. Geological Association of Canada; Ottawa.
  • 81. KENDALL, A.C. & HARWOOD, G.M. 1996. Marine evaporites: arid shorelines and basins. In: H.G. READING (Ed.), Sedimentary environments: processes, facies and stratigraphy (3 ed.), pp. 281-324. Blackwell Science Ltd.; Cambridge.
  • 82. KIRKLAND, D.W. 2003. An explanation for the varves of the Castile evaporites (Upper Permian), Texas and New Mexico, USA. Sedimentology, 50, 899-920.
  • 83. KNOLL, A.H. & BAULD, J. 1989. The evolution of ecological tolerance in pokaryotes. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80, 209-223.
  • 84. KRUMBEIN, W.E. & COHEN, Y. 1974. Biogene, klastische und evaporitische Sedimentation in einen mesothermen monomiktischen ufernahen See (Golf von Aqaba). Geologische Rundschau, 63, 1035-1065.
  • 85. KRUMBEIN, W.E. & COHEN, Y. 1977. Primary production, mat formation and lithification: contribution of oxygenic and facultative anoxygenic cyanobacteria. In: E. FLÜGEL (Ed.), Fossil algae, pp. 37-56. Springer; Berlin.
  • 86. KRUMBEIN, W.E., COHEN, Y. & SHILO, M. 1977. Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635-656.
  • 87. KRUMBEIN, W.E., PETERSON, D.M. & ZAVARZIN, G.A. (Eds), 2003. Fossil and recent biofilms; a natural history of life on Earth, pp. 1-482. Kluwer Academic Publishers; Dordrecht.
  • 88. KUSHNIR, J. 1981. Formation and early diagenesis of varved evaporite sediments in a coastal hypersaline pool. Journal of Sedimentary Petrology, 51, 1193-1203.
  • 89. LAST, W.M. 1993. Geolimnology of Freefight Lake: an unusual hypersaline lake in the northern Great Plains of western Canada. Sedimentology, 40, 431-448.
  • 90. LEPESHKOV, I.N., BUYNEVICH, D.P., BUYNEVICH, N.A. & SEDELNIKOV, G.S. 1981. Prospects of the utilization of the salt resources of Kara Bogaz Gol, pp. 1-275. Nauka; Moscow. [In Russian]
  • 91. LÉTOLLE, R. & CHESTERIKOFF, A. 1999. Salinity of surface waters in the Aral Sea region. International Journal of Salt Lake Research, 8, 293-306.
  • 92. LEVINE, R.M. 1998. The fall and rise of the Garabogaz Aylagy (Kara Bogaz Gol) lagoon. Conference “Oil and Environment Security in the Black and Caspian Seas”. The Columbia Caspian Project; http://www.sipa.columbia.edu/RESOURCES/CASPIAN/enviro.html
  • 93. LEWIS, W.M.J. 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences, 40, 1779-1787.
  • 94. LIU, Z., LI, P. & LIU, X. 2002. Culturing artificial algal mats to improve the salt yield and quality in saltworks. Ecological Engineering, 18, 379-383.
  • 95. LO CICERO, G. & CATALANO, R. 1978. Facies and petrography of some Messinian evaporites of the Ciminna Basin (Sicily). Memorie della Societá Geologica Italiana, 16 [for 1976], 63-81.
  • 96. LONGMORE, M.E., LULY, J.G. & O’LEARY, B.M. 1986. Cesium137 redistribution in the sediments of the playa, Lake Tyrrel, northwestern Victoria. II. Pattern of cesium-137 and pollen redistribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 54, 197-218.
  • 97. LOGAN, B.W. 1987. The MacLeod evaporite basin, western Australia. Holocene environments, sediments and geological evolution. AAPG Memoir, 44, 1-140.
  • 98. LOWE, D.J., GREEN, J.D., NORTHCOTE, T.G. & HALL, K.J. 1997. Holocene fluctuations of a meromictic lake in southern British Columbia. Quaternary Research, 48, 101-113.
  • 99. LOWENSTEIN, T. 1982. Primary features in a potash evaporite deposit, the Permian Salado Formation of west Texas and New Mexico. In: C.R. HANDFORD, R.G. LOUKS & G.R. DAVIES (Eds), Depositional and diagenetic spectra of evaporites - a core workshop. SEPM Core Workshop, No. 3, pp. 276-304. Calgary.
  • 100. LOWENSTEIN, T.K. & HARDIE, L.A. 1985. Criteria for the recognition of salt-pan evaporites. Sedimentology, 32, 627-644.
  • 101. MACINTYRE, S. & JELLISON, R. 2001. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia, 466, 13-29.
  • 102. MAGEE, J.W. 1991. Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 84, 3-42.
  • 103. MARÍN, N., MORALES, F., LODEIROS, C. & TAMIGNEAUX, E. 1998. Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. Journal of Applied Phycology, 10, 405-411.
  • 104. MARION, G.M., FARREN, R.E. & KOMOROWSKI, A.J. 1999. Alternative pathways for seawater freezing. Cold Regions Science and Technology, 29, 295-266.
  • 105. MARTINEZ, D.E. 1995. Changes in the ionic composition of a saline lake, Mar Chiquita, Province of Córdoba, Argentina. International Journal of Salt Lake Research, 4, 25-44.
  • 106. MELACK, J.M. & JELLISON, R. 1998. Limnological conditions in Mono Lake: contrasting monomixis and meromixis in the 1990s. Hydrobiologia, 384, 21-39.
  • 107. MILLER, G.M., JELLISON, R., OREMLAND, R.S. & CULBERTSON, C.W. 1993. Meromixis in hypersaline Mono Lake, California. 3. Biogeochemical response to stratification and overturn. Limnology and Oceanography, 38, 1040-1051.
  • 108. MORRIS, R.C. & DICKEY, P.A. 1957. Modern evaporite deposition in Peru. Bulletin of the American Association of Petroleum Geologists, 41, 2467-2474.
  • 109. NEEV, D. & EMERY, K.O. 1967. The Dead Sea. Depositional processes and environments of evaporites, pp. 1-147. Monson Press; Jerusalem.
  • 110. NIEMI, T.M., BEN-AVRAHAM, Z. & GAT, J.R. (Eds), 1997. The Dead Sea: the lake and its setting. Oxford Monographs on Geology and Geophysics, 36, 1-286. Oxford University Press, Inc.; New York.
  • 111. NURMI, R.D. & FRIEDMAN, G.M. 1977. Sedimentology and depositional environments of basin-center evaporites, Lower Salian Group (Upper Silurian), Michigan Basin. In: J.H. FISHER (Ed.), Reefs and evaporites - concepts and models. AAPG Studies in Geology, 5, 23-52.
  • 112. NÜBEL, U., GARCIA-PICHEL, F., CLAVERO, E. & MUYZER, G. 2000. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along salinity gradient. Environmental Microbiology, 2, 217-226.
  • 113. OREN, A., KÜHL, M. & KARSTEN, U. 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrops, photopigments, and light penetration. Marine Ecology Progress Series, 128, 151-159.
  • 114. OREN, A. & RODRÍGUEZ-VALERA, F. 2001. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiology Ecology, 36, 123-130.
  • 115. ORTÍ CABO, F., PUEYO MUR, J.J., GEISLER-CUSSEY, D. & DULAU, N. 1984. Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain). Revista d’Investigacions Geologiques, 38-39, 169-220.
  • 116. ORTÍ CABO, F. & SHEARMAN, D.J. 1977. Estructures y fábricas deposicionales en las evaporitas del mioceno superior (Messiniense) de San Miguel de Salinas (Alicante, España). Diputación Provincial de Barcelona, Instituto de Investigaciones Geológicas, Revista, 32, 5-54.
  • 117. PEDRÓS-ALIÓ, C., CALDERÓN-PAZ, J.I., MACLEAN, M.H., MEDINA, G., MARRASÉ, C., GASOL, J.M. & GUIXABOIXEREU, N. 2000. The microbial food web along salinity gradient. FEMS Microbiology Ecology, 32, 143-155.
  • 118. PERTHUISOT, J.P. & JAUZEIN, A. 1978. Le Khour el Aadid, lagune sursalée de l’Emirat de Qatar. Revue de Géographie Physique et de Géologie Dynamique, Sér. 2, 20, 347-358.
  • 119. PETRICHENKO, O.I., PERYT, T.M. & POBEREGSKY, A.V. 1997. Pecularities of gypsum sedimentation in the Middle Miocene Badenian evaporite basin of Carpathian Foredeep. Slovak Geological Magazine, 3, 91-104.
  • 120. PFLÜGER, F. & GRESSE, P.G. 1996. Microbial sand chips - a nonactualistic sedimentary structure. Sedimentary Geology, 102, 263-274.
  • 121. POST, F.J., BOROWITZKA, L.J., BOROWITZKA, M.A., MACKAY, B. & MOULTON, T. 1983. The protozoa of a Western Australian hypersaline lagoon. In: U.T. HAMMER (Ed.), Saline lakes. Developments in Hydrobiology, 16, 95-113. Dr W. Junk Publishers; Hague.
  • 122. RATKOVICH, D.Y. & IVANOVA, L.V. 2001. Wind-induced water level rises. Water Resources, 28, 509-515. [translation of Russian text from Vodnyye Resursy, 2001]
  • 123. RAUP, O.B. 1982. Gypsum precipitation by mixing seawater brines. The American Association of Petroleum Geologists Bulletin, 66, 363-367.
  • 124. REINECK, H.-E., GERDES, G., CLAES, M., DUNAJTSCHIK, K., RIEGE, H. & KRUMBEIN, W.E. 1990. Microbial modification of sedimentary surface structures. In: D. HELING, P. ROTHE, U. FÖRSTNER & P. STOFFERS (Eds), Sediments and environmental geochemistry. Selected aspects and case histories, pp. 254-276. Springer; Berlin.
  • 125. RISACHER, F. 1992. Géochimie des lacs salés et croûtes de sel de l’Altiplano Bolivien. Sciences Géologiques, Bulletin, 45, 135-214. Strasbourg.
  • 126. ROBERTSON, A.H.F., EATON, S., FOLLOWS, E.J. & PAYNE, A.S. 1995. Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terra Nova, 7, 233-253.
  • 127. RODRÍGUEZ-ARANDA, J.P., ROUCHY, J.M., CALVO, J.P., ORDÓπEZ, S. & GARCÍA DEL CURA, M.A. 1995. Unusual twinning features in large primary gypsum crystals formed in salt lake conditions, middle Miocene, Madrid Basin, Spain: palaeoenvironmental implications - reply. Sedimentary Geology, 100, 183-186.
  • 128. ROMERO, J.R. & MELACK, J.M. 1996. Sensivity of vertical mixing in a large saline lake to variations in runoff. Limnology and Oceanography, 41, 955-965.
  • 129. ROSELL, L., ORTÍ, F., KASPRZYK, A., PLAYA, E. & PERYT, T.M. 1998. Strontium geochemistry of Miocene primary gypsum: Messinian of southeastern Spain and Badenian of Poland. Journal of Sedimentary Research, 68, 63-79.
  • 130. ROSEN, M.R., COSHELL, L., TURNER, J.V. & WOODBURY, R.J. 1996. Hydrochemistry and nutrient cycling in Yalgorup National Park, Western Australia. Journal of Hydrology, 185, 241-274.
  • 131. ROUCHY, J.M. 1982. La genèse des évaporites messiniennes de Méditerrannée. Mémoires du Muséum National d’Histoire Naturelle, Sér. C, Sciences de la Terre, 50, 1-267.
  • 132. ROUCHY, J.M. & MONTY, C. 1981. Stromatolites and cryptalgal laminites associated with Messinian gypsum of Cyprus. In: C. MONTY (Ed.), Phanerozoic stromatolites, pp. 155-180. Springer; Berlin.
  • 133. ROUCHY, J.M. & MONTY, C. 2000. Gypsum microbial sediments: Neogene and modern examples. In: R.E. RIDING & S.M. AWRAMIK (Eds), Microbial sediments, pp. 209-216. Springer, Berlin.
  • 134. ROUX, J.M. 1996. Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield. International Journal of Salt Lake Research, 5, 103-130.
  • 135. SANDAA, R.-A., SKJOLDAL, E.F. & BRATBAK, G. 2003. Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles, 7, 347-351.
  • 136. SANFORD, W.E. & WOOD, W.W. 1991. Brine evolution and mineral deposition in hydrologically open evaporite basins. American Journal of Science, 291, 687-710.
  • 137. SCHOPF, J.W. 1999. Cradle of life; the discovery of earth’s earliest fossils, pp. 1-367. Princeton University Press; Princeton, New Jersey.
  • 138. SCHREIBER, B.C. 1978. Environments of subaqueous gypsum deposition. In: W.E. DEAN & B.C. SCHREIBER (Eds), Marine evaporites. SEPM Short Course, No. 4, 43-73. Oklahoma City.
  • 139. SCHREIBER, B.C., CATALANO, R. & SCHREIBER, E. 1977. An evaporitic lithofacies continuum: latest Miocene (Messinian) deposits of Salemi Basin (Sicily) and a modern analog. In: J.H. FISHER (Ed.), Reefs and evaporites - concepts and models. AAPG Studies in Geology, 5, 169-180.
  • 140. SCHREIBER, B.C. & KINSMAN, J.J. 1975. New observations on the Pleistocene evaporites of Montellegro, Sicily and a modern analog. Journal of Sedimentary Petrology, 45, 469-479.
  • 141. SCHREIBER, B.C., ROTH, M.S. & HELMAN, M.L. 1982. Recognition of primary facies characteristics of evaporites and differentiation of these forms from diagenetic overprints. In: C.R. HANDFORD, R.G. LOUCKS & G.T. DAVIES (Eds), Depositional and diagenetic spectra of evaporites. SEPM Core Workshop, 3, 1-32. Calgary.
  • 142. SHEARMAN, D.J. & ORTÍ CABO, F. 1978. Upper Miocene gypsum: San Miguel de Salinas, S. E. Spain. Memorie della Societá Geologica Italiana, 16 [for 1976], 327-339.
  • 143. SHERWOOD, J.E., STAGNITTI, F., KOKKINN, M.J. & WILLIAMS, W.D. 1991. Dissolved oxygen concentrations in hypersaline waters. Limnology and Oceanography, 36, 235-250.
  • 144. SHUMILIN, E., GRAJEDA-MUÑOZ, M., SILVERBERG, N. & SAPOZHNIKOV, D. 2002. Observations on trace element hypersaline geochemistry in surficial deposits of evaporation ponds of Exportadora de Sal, Guerrero Negro, Baja California Sur, Mexico. Marine Chemistry, 79, 133-153.
  • 145. SLOSS, L.L. 1969. Evaporite deposition from layered solutions. The American Association of Petroleum Geologists Bulletin, 53, 776-789.
  • 146. SMOOT, J.P. & LOWENSTEIN, T.K. 1991. Depositional environments of non-marine evaporates. In: J.L. MELVIN (Ed.), Evaporites, petroleum and mineral resources, Developments in Sedimentology, 50, 189-347. Elsevier; Amsterdam.
  • 147. SONNENFELD, P. 1984. Brines and evaporites, pp. 1-613. Academic Press Inc.; Orlando.
  • 148. SONNENFELD, P. & HUDEC, P.P. 1978. Geochemistry of a meromictic brine lake. Geologie en Mijnbouw, 57, 333-337.
  • 149. SONNENFELD, P. & HUDEC, P.P. 1980. Heliothermal lakes. In: A. NISSENBAUM (Ed.), Hypersaline brines and evaporitic environments. Developments in Sedimentology, 28, 93-100. Elsevier; Amsterdam.
  • 150. SONNENFELD, P., HUDEC, P.P. & TUREK, A. 1976. Stratified heliothermal brines as metal concentrations. Acta Cientifica Venezolana, 27, 190-195.
  • 151. SONNENFELD, P., HUDEC, P.P. TUREK, A. & BOON, J.A. 1977. Base-metal concentration in a density-stratified evaporite pan. In: J.H. FISHER (Ed.), Reefs and evaporites – concepts and models. AAPG Studies in Geology, 5, 181-186.
  • 152. STEINHORN, I. 1985. The disappearance of the long term meromictic stratification of the Dead Sea. Limnology and Oceanography, 30, 451-472.
  • 153. STEPHENS, D.W. & GILLESPIE, D.M. 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography, 21, 74-87.
  • 154. STERN, M.E. 1980. Mixing in stratified fluids. In: A. NISSENBAUM (Ed.), Hypersaline brines and evaporitic environments. Developments in Sedimentology, 28, 9-22. Elsevier; Amsterdam.
  • 155. STILLER, M., GAT, J.R. & KAUSHANSKY, P. 1997. Halite precipitation and sediment deposition as measured in sediment traps deployed in the Dead Sea: 1981-1983. In: T.M. NIEMI, Z. BEN-AVRAHAM & J.R. GAT (Eds), The Dead Sea: the lake and its setting. Oxford Monographs on Geology and Geophysics, 36, 171-183. Oxford University Press, Inc.; New York.
  • 156. STRACHOV, N.M. 1962. Principles of the theory of lithogenesis, v. 3. Regularities of composition and distrubution of the arid zone deposits, pp. 1-551. Izdatelstvo Akademii Nauk SSSR; Moscow. [In Russian]
  • 157. TARASOV, M.N. 1961. Hydrochemistry of Balkhash Lake, pp. 1-229. Izdatelstvo Akademii Nauk SSSR; Moscow. [In Russian]
  • 158. TELLER, J.T., BOWLER, J.M. & MACUMBER, P.G. 1982. Modern sedimentation and hydrology in Lake Tyrrell, Victoria. Journal of the Geological Society of Australia, 29, 159-175.
  • 159. THOMAS, J.-C. 1984. Formations benthiques à Cyanobactéries des salins de Santa Pola (Espagne): Composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements. Revista d’Investigacions Geologiques, 38-39, 139-158.
  • 160. TORGERSEN, T. 1984. Wind effect and salt loss in playa lakes. Journal of Hydrology, 74, 137-149.
  • 161. TRICHET, J., DÉFARGE, C., TRIBBLE, J., TRIBBLE, G. & SANSONE, F. 2001. Christmas Island lagoonal lakes, models for the deposition of carbonate-evaporite-organic laminated sediments. Sedimentary Geology, 140, 177-180.
  • 162. TWENHOFEL, W.H. 1950. Principles of sedimentation (2 ed.), pp. 1-673. McGraw-Hill Book Company, Inc.; New York.
  • 163. VAI, G.B. & RICCI LUCCHI, F. 1977. Algal crusts, autochthonous and clastic gypsum in a cannibalistic evaporite basin: a case history from the Messinian of Northern Apennines. Sedimentology, 24, 211-244.
  • 164. VALERO-GARCÉS, B.L., GROSJEAN, M., KELTS, K., SCHREIER, H. & MESSERLI, B. 1999. Holocene lacustrine deposition in the Atacama Altiplano: facies models, climate and tectonic forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 101-125.
  • 165. VERSCHUREN, D. 1999. Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnology and Oceanography, 44, 1103-1113.
  • 166. WARREN, J.K. 1982. The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology, 29, 609-637.
  • 167. - 1999. Evaporites. Their evolution and economics, pp. 1-438. Blackwell Science.; Oxford.
  • 168. WATTS, J.M., SWAN, B.K., TIFFANY, M.A. & HURLBERT, S.H. 2001. Thermal, mixing and oxygen regimes of the Salton Sea, California, 1977-1999. Hydrobiologia, 466, 159-176.
  • 169. YOUSSEF, E-S.AA. 1988. Sedimentological studies of Neogene evaporites in the northern Western Desert, Egypt. Sedimentary Geology, 59, 261-273.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0638-2936
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.