PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of bubbles from a single nucleation site

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A systematic study on nucleate pool boiling from single artificial nucleation site to saturated, distilled water and methanol under atmospheric pressure is reported. Electrically heated sections have been employed to produce vapour bubbles. The cavities were drilled on a flat end of the copper rod. The diameter of the cavities was 0.25 mm and 1.0 mm, and the depth was approximately 0.40 mm and 1.6 mm, respectively. Laser-photodiode system coupled with a digital oscilloscope or a PC-audio card has been utilised for measurement of release frequency. An exposure technique for measurement of bubble size has been developed. The images of the bubbles were recorded with a CCD video camera and analysed using a commercial software.
Słowa kluczowe
Rocznik
Strony
59--77
Opis fizyczny
Bibliogr. 52 poz.,Rys., tab.,
Twórcy
  • Gdansk University of Technology
autor
  • Kluber Lubrication Polska
autor
  • FH Stralsund/University of Applied Sciences, Germany
Bibliografia
  • [1] ROHSENOW W.M.: A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74(1952), 969-976.
  • [2] PIORO I.L.: Experimental evaluation of constants for the Rohsenow pool boiling correlation, Int. J. Heat Mass Transfer, 42(1999), 2003-2013.
  • [3] ZUBER N.: Nucleate boiling. The region of isolated bubbles and similarity with natural convection, Int. J. Heat Mass Transfer, 6(1963), 53-78.
  • [4] HAN C.Y., GRIFFITH P.: The mechanism of heat transfer in nucleate pool boiling -Parts I and II, Int. J. Heat Mass Transfer, 8(1965), 887-914.
  • [5] JUDD R.L., HWANG K.S.: A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation, ASME J. Heat Transfer, 98(1976), 623- 629.
  • [6] HAIDER S.I., WEBB R.L.: A transient micro-convection model of nucleate pool boiling, Int. J. Heat Mass Transfer, 40(1997), 3675-3688.
  • [7] PODOWSKI M. Z.: Toward mechanistic multidimensional modeling of forced- convection boiling, Proc. Boiling 2000. Phenomena & Emerging Applications, ed. A. Bar-Cohen. Alaska, 2(2000), 531-550.
  • [8] LIAW S.P., DHIR V.K.: Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces, ASME J. Heat Transfer, 111(1989), 731-738.
  • [9] SALLALY M.: Wärmeübertragung bei Blasenverdampfung von Flüssigkeiten an künstlichen Siedekeimen, Chem. Eng. Sci., Vol. 21(1966), 367-380.
  • [10] KOSKY P. G.: Nucleation Site Instability in Nucleate Boiling, Int. J. Heat Mass Transfer, 11(1968), 929-932.
  • [11] SERNAS V., HOOPER F. C.: The Initial Vapour Bubble Growth on a Heat Wall during Nucleate Boiling, Int. J. Heat Mass Transfer, 12(1969), 1627-1639.
  • [12] GRIFFITH P., WALLIS J. Der. The Role of Surface Conditions in Nucleate Boiling, Chem. Eng. Prog. Symp. Ser., 56(30), 1960, 49-63.
  • [13] PRECKSHOT G. W., DENNY V.: Explorations of Surface and Cavity Properties on the Nucleate Boiling of Carbon Tetrachloride, Can. J. Chem. Eng., 45(1967), 241-249.
  • [14] HATTON A. P., HALL I. S.: Photographic Study of Boiling on Prepared Surface, Int. Heat Transfer Conf. Chicago, 1966, 24-27.
  • [15] HOWELL J. R., SIEGEL R.: Incipience, Growth and Detachment of Boiling Bubbles in Saturated Water from Artificial Nucleation Sites of Known Geometry and Size, Int. Heat Transfer Conf. Chicago, 1966, 512-513.
  • [16] HELED Y., RICKLIS A.: Pool Boiling from Large Arrays of Artificial Nucleation Sites, Int. J. Heat Mass Transfer, 13(1970), 503-516.
  • [17] HATTON A. P., JAMES D.D., LIEW T.L.: Measurement of Bubble Characteristics for Pool Boiling from Single Cylindrical Cavities, Int. Heat Transfer Conf. Versailles, vol. 5, B1.2, 1970.
  • [18] SCHIMMELPFENNIG K.: Blasenverdampfung an Heizwandoberflächen mit künstlichen Dampfblasenkeimstellen, Chem. Ing. Tech., 42(1970), 16-22.
  • [19] SZYMCZYK J., CIEŚLIŃSKI J. T.: Measurements of gas and vapour detachment frequency, diameter and rise velocity, Trans. of the IFFM, No. 109, 2001, 69-85. [20] MCFADDEN P., GRASSMANN P.: The relation between bubble frequency and diameter during nucleate boiling, Int. J. Heat Mass Transfer, 5(1962), 169-173.
  • [21] IVEY H.J.: Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling, Int. J. Heat Mass Transfer, 10(1967), 1023-1040.
  • [22] KUMADA T., SAKASHITA H., YAMAGISHI H.: Pool boiling heat transfer-I. Measure- ments and semi-empirical relations of detachment frequencies of coalesced bubbles, Int. J. Heat Mass Transfer, 38(1995), 969-977.
  • [23] STEPHAN K., KÖRNER M.: Blasenfrequenzen beim Verdampfen reiner Flüssigkeiten und binärer Flüssigkeitsgemische, Wärme-Stoffübertragung, 25(1990), 299-304.
  • [24] SRINIVAS N.S., KUMAR R.: Prediction of bubble growth rates and departure volumes in nucleate boiling at isolated sites, Int. J. Heat Mass Transfer, 27(1984), 1403-1409.
  • [25] CIEŚLIŃSKI J. T., SZYMCZYK J. A.: Messungen der Frequenzen, des Durchmessers und Aufstiegsgeschwindigkeit stechnik, Proc. VIIth Int. Symp. on Heat Exchange and Renewable Energy Sources, Świnoujście 1998, 85-92. von Gasblasen mit Hilfe einer Laser Visualisierung-
  • [26] SINGH A., MIKIC B. B., ROHSENOw W. M.: Effect of superheat and cavity size on frequency of bubble departure in boiling, ASME. J. of Heat Transfer, 99(1977), 246-249.
  • [27] DAVIDSON L., AMICK E. H., JR.: Formation of Gas Bubbles at Horizontal Orifice, AIChE J., 2(1956), No. 3, 337-342.
  • [28] MORI Y., HIJIKATA K., KURIYAMA L.: Experimental study of bubble motion in mercury with and without a magnetic field, ASME J. of Heat Transfer, 99(1977), 404-410.
  • [29] BERGEZ W.: Nucleate boiling on a thin heating plate: heat transfer and bubbling activity of nucleation sites, Int. J. Heat Mass Transfer, 38(1995), 1799-1811.
  • [30] TASSIN A.L., NIKITOPOULOS D. E.: Non-intrusive measurements of bubble size and velocity, Experiments in Fluids, 19(1995), 121-132.
  • [31] DIAS M. I., BREIT R., RIETHMULLER M. L.: Non-intrusive measurement technique to analyze bubble formation, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussel, 1997, 949-956.
  • [32] KULENOVIC R., MERTZ R., GROLL M.: High speed flow visualization of pool boil- ing from enhanced evaporator tubes, Proc. 3rd European Thermal Sciences Conf., Heidelberg, 2000, 179-185.
  • [33] LAUTERBORN W., HENTSCHEL L: Cavitation bubble dynamics studied by high-speed photography and holography, Ultrasonics, 23(1985), 260-268.
  • [34] GREHAN G. ET AL.: Measurement of bubbles by Phase Doppler technique and trajectory ambiguity, R. J. Adrian, D. F. G. Durao, F. Durts, M. Maeda, J. Whitelow (eds), Proc. of the 7th Int. Symp. Developments in Laser Techniques and Applications to Fluid Mechanics, Lisbon, Portugal, 1994, 290-302.
  • [35] O'CONNOR J.P., YOU S.M., HAJI-SHEIKH A.: Laser Doppler Anemometry measurements of bubble rise velocity and departure frequency, Experimental Heat Trans- fer, 8(1995), 145-160.
  • [36] RAMOS E. ET AL.: Dynamics of boiling from a short capillary tube, Experimental Heat Transfer, 8(1995), 145-160.
  • [37] KUZMA-KICHTA YU., USTINOV A. K., USTINOV A. A.: Investigation by laser and acoustic diagnostics method of interface oscillations during boiling, Proc. Boiling 2000. Phenomena & Emerging Applications, ed. A. Bar-Cohen. Alaska, 2000, vol. 1, 100-115.
  • [38] HAHNE E., WINDISCH R., BEHREND K.: Untersuchung von Einzelblasen an ölbeschichteten Oberflächen mit künstlichen Keimstellen, Wärme-Stoffübertragung, 25(1990), 299-304.
  • [39] TOLUBINSKY V. I., OSTROVSKY J. N.: On the mechanism of boiling heat transfer (vapour bubbles growth rate in the process of boiling of liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, 9(1966), 1463-1470.
  • [40] KÖRNER W., PHOTIADIS G.: Pool boiling heat transfer and bubble growth on surfaces with artificial cavities for bubble generation, Heat Transfer in Boiling, eds. E. Hahne and U. Grigull, Academic Press & Hemisphere, 1977, 77-84.
  • [41] HSU S.T., SCHMIDT F. W.: Measured variations in local surface temperatures in pool boiling, ASME. J. Heat Transfer, 83(1961), 254-260.
  • [42] STEINBRECHT D.: Beitrag zur Untersuchung der Dampfblasenbildung, Energietechnik, Heft 5, 1969, 202-204.
  • [43] KÖNIG A.: Über den Einfluss der Heizwandeigenschaften auf den Wärmeübertra- gung beim der Blasenverdampfung, Diss. D83, Berlin, 1971.
  • [44] v. CEUMERN-LINDENSTJERNA W. CH.: Abreißdurchmesser und Frequenzen von Dampfblasen in Wasser und wässrigen Na Cl-Lösungen beim Sieden an einer hori- zontalen Heizfläche, Diss. TU Braunschweig 1975.
  • [45] STEPHAN K.: Wärmeübergang beim Kondensieren und beim Sieden, Wärme- Stoffübertragung, ed. U. Grigull, Berlin Heidelberg New York, Springer 1988.
  • [46] COLE R.: A photographic study of pool boiling in the region of critical heat flux, AIChE J., 6(1960), 533-538.
  • [47] SIEGEL R., KESHOCK E. G.: Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, AIChE J., 10(1964), 509-516.
  • [48] COLE R.: Bubble frequencies and departure volumes at subatmospheric pressures, AIChE J., 13(1967), 779-783.
  • [49] PERKINS A. S., WESTWATER J. W.: Measurements of bubbles formed in boiling of methanol, AIChE J., 2(1956), 471-476.
  • [50] STANISZEWSKI B.: Nucleate boiling bubble growth and departure, Archiwum Budowy Maszyn, t. VII, 1960, 3-26.
  • [51] CIEŚLIŃSKI J. T., SZYMCZYK J. A.: Measurements of gas and vapour bubble motion by means of visualisation techniques, Proc. 2nd Int. Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, Italy, 1999, ed. G. P. Celata, P. Di Marco, R.K. Shah. Pisa: Edizioni ETS**1999, vol. 3, 1441-1448.
  • [52] v. CEUMERN-LINDENSTJERNA W. CH.: Bubble departure diameter and release frequencies during nucleate pool boiling of water and aqueous sodium chloride solutions, Heat Transfer in Boiling, eds. E. Hahne and U. Grigull, Academic Press & Hemi- sphere, 1977, 53-75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0379-2496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.