PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamics of pipeline gas flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The form of mathematical models describing the transient flow of gas in pipes varies in practice with the assumptions made as regards the conditions of operation of the networks. Generally, the thermodynamics of one-dimensional transient flow of gas in pipes is described by an equation of energy. In much of the literature, the assumption of either an isothermal or an adiabatic process is adopted. Isothermal flow relates to slow fluctuations in demand and it is assumed that the gas in the pipe has sufficient time to reach thermal equilibrium with its constant-temperature surroundings. Similarly, when rapid transients are under consideration, it is assumed that the pressure changes occur instantaneously and heat conduction effects can be neglected. In such cases the thermodynamics of the gas flow can be considered as of an adiabatic process. For many dynamic gas applications the assumption of a process having a constant temperature or being adiabatic is not valid. In this case, the temperature of the gas is a function of distance and is calculated using a mathematical model, which includes energy equation. In the paper a comparison between the isothermal and two non-isothermal models of different accuracy is presented. Practical example has been used to emphasise differences between models.
Słowa kluczowe
Rocznik
Strony
53--67
Opis fizyczny
Bibliogr. 13 poz.,Rys., tab.,
Twórcy
autor
  • Politechnika Warszawska
Bibliografia
  • [1] DANESHYAR H.: One-dimensional compressible flow, Pergamon Press, New York 1976.
  • [2] GOLDWATER M. H., FINCHAM A. E.: Modelling of dynamical systems, (ed. H. Nicholson), Peter Peregrinus, Stevenage, 1981.
  • [3] ISO 12213-3 NATURAL GAS CALCULATION OF COMPRESSION FACTOR, Part 3: Calculation using physical properties, International Standarization Office, Geneve 1997. -
  • [4] KRALIK J. et al.: Dynamic modelling of large scale networks with application to gas distribution, Elsevier, New York 1988.
  • [5] OSIADACZ A. J.: Simulation and analysis of gas networks, Gulf Publishing Company, Huston 1989.
  • [6] OSIADACZ A. J.: Different transient models limitations, Advantages and Disadvantages, in: Proceedings of the PSIG - The 28th Annual Meeting, San Francisco 1996.
  • [7] OSIADACZ A. J., CHACZYKOWSKI M.: Simulation of non-isothermal transient gas flow in a pipeline, Archives of Thermodynamics, Vol. 22(2001), 51-70.
  • [8] OSIADACZ A. J., PANCEWICZ A..: Heat transfer models for non-isothermal transient flow of gas in a pipeline, [in:] I Konf. Nauk.-Techn. '2000, Energetyka Gazowa, Szczyrk 2000.
  • [9] SCHIESSER W. E.: The numerical methods of lines, Academic Press, London 1991.
  • [10] SHAPIRO A. H.: The dynamics and thermodynamics of compressible fluid flow, The Ronald Press Company, New York 1954.
  • [11] WYLIE E. B., STREETER V. L.: Fluid transients, McGraw-Hill, New York 1978.
  • [12] WARK K.: Advanced thermodynamics for engineers, McGraw-Hill, New York 1995.
  • [13] WAROWNY W.: Departure property functions of gas substances determined by means of virial coefficients, Gaz Woda i Technika Sanitarna, 53, 1979, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0055-2155
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.