PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic limits for work-assisted and solar assisted mass transfer operations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We displey a basic thermodynamic approach to endoreversible limits' of work that may be produced or consumed by a single resource flowing in an open system. To evaluate these limits we consider sequential work-assisted unit operations, in particular those of heating, evaporation and drying which run jointly with 'endoreversible' thermal machines (e.g. heat pumps.) We also compare structures of optimization criteria describing these limits in conventional operations of mass transfer and in work-assisted operations. Mathematical analogies between entropy production expressions in these two sorts of operations are helpful to formulate optimization criteria in both cases. In work-assisted unit operations, total power input is minimized at constraints which take into account dynamics of heat and mass transport and rate of work consumption. Finite-rate, endoreversible models include irreducible losses caused by thermal resistances to the classical exergy potential. Functions of extremum work, which incorporate residual minimum entropy production, are formulated in terms of initial and final states, total duration and (in discrete processes) number of stages. With a radiative engine as an example, extension of the present approach to thermodynamic limits of nonlinear processes is also discussed.
Twórcy
  • Faculty of Chemical Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa
Bibliografia
  • [1] SZARGUT J., MORRIS D. R. AND STEWARD F.: Exergy analysis in thermal, Chemical and Metalurgical Processes, New York: Hemisphere, New York, 1988.
  • [2] SIENIUTYCZ S.: Computing of thermodynamic functions in gas-moisture-solid systems, Reports of Inst. Chem. Engng., Warsaw Tech. Univ., 2(1973), 323-349.
  • [3] SIENIUTYCZ S.: Optimal control in multistage flow systems by Hamilton-Jacobi- Bellman, Archives of Thermodynamics, 20(1999), No. 3-4, 27-48.
  • [4] SIENIUTYCZ S. AND BERRY R. S.: Discrete Hamiltonian analysis of endoreversible thermal cascades, Chapter 6 in the book: Thermodynamics of Energy Conversion and Transport (eds. S. Sieniutycz and A. de Vos), Springer N.Y., 2000, 143-172.
  • [5] SIENIUTYCZ S.: Endoreversible modeling and optimization of thermal machines by dynamic programming, Chap. 11 in the book: Recent advance in finite time thermodynamics (ed. Ch. Wu), Nova Science, New York, 1999.
  • [6] SIENIUTYCZ S.: Hamilton-Jacobi-Bellman theory of dissipative thermal availability, Physical Review, 56(1997), 5051-5064.
  • [7] SIENIUTYCZ S.: Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems, Physics Reports 326, March issue 4, Elsevier, Amsterdam, 2000, 165-285.
  • [8] SIENIUTYCZ S. AND SZWAST Z.: Practice in optimization, Wydawnictwa Naukowo Techniczne, Warsaw, 1982.
  • [9] SALAMON P., NITZAN P. A., ANDRESEN B. AND BERRY R. S.: Minimum entropy production and the optimization of heat engines, Phys. Rev. A, 21(1980), 2115-2129.
  • [10] ANDRESEN B. AND GORDON J.: Constant thermodynamic speed for minimizing entropy production in thermodynamic processes and simulated annealing, Phys Rev. E., 50(1994), 4346-4351.
  • [11] SPIRKL W. AND RIES H.: Optimal finite-time endoreversible processes, Phys. Rev. E, 52(1995), 3485-3489.
  • [12] TONDEUR D. AND KVAALEN E.: Equipartition of entropy production: an optimality criterion for transfer and separation processes, Ind. Eng. Chem. Research, 26(1987), 50-56.
  • [13] SIENIUTYCZ S.: Optimal control framework for multistage engines with heat and mass transfer, J. Non-Equilibrium Thermodyn. 24(1999), 40-74.
  • [14] SIENIUTYCZ S.: Thermodynamic optimization for work-assisted heating and drying operations, Energy Conversion & Management, 41(18), 2000, 2009-2031.
  • [15] A. DE VOS: Endoreversible thermodynamics of solar energy conversion, Clarendon Press, Oxford, 1992, 29-51.
  • [16] SZARGUT J.: Problems of thermodynamic optimization, Archives of Thermodynamics, 19(1998), No. 3-4, 85-94.
  • [17] MORAN M. J.: On second-law analysis and the failed promise of finite-time thermodynamics, Energy, 6(1998), 517-519.
  • [18] CHEN J., YAN Z., LIN G. AND ANDRESEN B.: On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines, Energy Conversion & Management, 42(2001), 173-181.
  • [19] BOSNIAKOVIC F.: Technische Thermodynamik, I und II Theodor Steinkopff, Dreseden, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0055-2154
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.