Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Vectorial space set bases of symmetrical multinominals of numerous variables in spectral notation (theoretical outline)
Języki publikacji
Abstrakty
All symmetric polynomials of multiple variables, with the variables belonging to the fixed, final set, are the elements of the vector space of infinite dimension. The vector space contains numerous finite subspaces. These subspaces are subjected to a standard analysis. Set theory classifications and ordering relations indicate how to choose the basis. The investigation of transient matrices reveals sets of algebra identities. The unlimited set of these identities is particularly useful when it comes to engineering applications.
Czasopismo
Rocznik
Tom
Strony
61--79
Opis fizyczny
Bibliogr. 12 poz., wz.
Twórcy
autor
Bibliografia
- [1] D. Cox, J. Little, D.O'Shea, Ideals, Varieties and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer New York 1998.
- [2] P.A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer Verlag, New York 1996.
- [3] T. Kaczorek, Wektory i macierze w automatyce i elektrotechnice, WNT, Warszawa 1998.
- [4] A. Kurosh, Higher Algebra, Mir Publishers, Moscow 1972.
- [5] A. Mostowski, M. Stark, Elementy algebry wyższej, PWN, Warszawa 1965.
- [6] B. Noble, J.W. Daniel, Applied Linear Algebra, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 07632, 1977.
- [7] T. Piwowarczyk, Multipower Notation of Symmetrical Polynomials in Engineering Calculus, PAN, Cracow 2000.
- [8] T. Piwowarczyk, Coefficients of Power Expansion of Original as Functions of Transform Coefficients, „Czasopismo Techniczne", Wydawnictwo Politechniki Krakowskiej, Cracow 1996.
- [9] T. Piwowarczyk, Symmetrical Polynomials of Multiple Variables in Electrical Circuits, „Czasopismo Techniczne", Wydawnictwo Politechniki Krakowskiej, Cracow 1999.
- [10] N.J. Wilenkin, Kombinatoryka, PWN, Warszawa 1972.
- [11] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer Wien New York 1996.
- [12] R.E. Zippel, Computer Algebra and Parallelism, Second International Workshop Ithaca, USA, May 9-11, 1990 Proceedings, Springer-Verlag 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0055-1842