PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal control in multiphase flow systems by Hamilton-Jacobi-Bellman

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using Bellman's method of dynamic programming, we present a synthesis of divorse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. we consider multiphase thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes and self-propagating wave fronts. They are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation (HJB equation) and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for Hamiltonian. we show that a common unifying criterion can be set for all considered systems, which is the criterion of a minimum generated entropy, and that the extremal structures are always canonical. We also show that constraints can modify the resulting functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled multiphase systems.
Twórcy
  • Warsaw University of Technology
Bibliografia
  • [1] ARIS R.: Discrete dynamic programming, Blaisdell, New York 1964.
  • [2] BELLMAN R. E.: Dynamic programming, Princeton University Press, Princeton 1957.
  • [3] BELLMAN R. E., DREYFUS S. E.: Applied dynamic programming, Państwowe Wydawnictwa Ekonomiczne, Warszawa 1967.
  • [4] BERRY R. S., KAZAKOV V. A., SIENIUTYCZ S., SZWAST Z., TSIRLIN A. M.: Thermodynamic optimization of finite time processes, Wiley, Chichester 2000.
  • [5] BOLTYANSKI V. G.: Mathematical methods of optimal control, Nauka, Moscow 1969.
  • [6] BOLTYANSKI, V. G.: Optimal control of discrete systems, Nauka, Moscow 1973.
  • [7] CURZON F. L., AHLBORN B.: Efficiency of Carnot engine at maximum power output, Amer. J. Phys., 43(1975), 22-24.
  • [8] FAN L. T.: The continuous maximum principle, A Study of Complex System Optimization, Wiley, New York 1966.
  • [9] FAN L. T., WANG C. S.: The discrete maximum principle, A Study of Multistage System Optimization, Wiley, New York 1964.
  • [10] FINDEISEN W., SZYMANOWSKI J., WIERZBICKI A.: Theory and computational methods of optimization, Państwowe Wydawnictwa Naukowe, Warszawa 1980.
  • [11] GRAY P., SCOTT S. K.: Chemical oscillations and instabilities, Oxford University Press, Oxford 1990.
  • [12] GUTOWSKI R.: Analytical mechanics, Wydawnictwa Naukowo Techniczne, Warszawa 1978.
  • [13] HORVATH D., PETROV V., SCOTT S. K.: Instabilities in propagating reaction-diffusion fronts, J. Chem. Phys., 98(1993), 6332-6343.
  • [14] KEENER, J. P.: A geometrical theory for spiral waves in excitable media, SIAM J. Appl. Math., 46(1986), 1039-1056.
  • [15] LANDAU L. D., LIFSHITZ E. M.: Course of theoretical physics, Vol. 1, Mechanics, Addison-Wesley, Reading (Mass.) 1960.
  • [16] LAZAR A., NOSZTICZIUS Z., FARKAS H.: Involutes: the geometry of chemical waves rotating in annular membranes, Chaos, 5(1995), 443-447.
  • [17] LEITMAN G.: An introduction to optimal control, McGraw Hill, New York 1966.
  • [18] MERON E.: The role of curvature and wavefront interactions in spiral-wave dynamics, Physica D, 49(1991), 98-106.
  • [19] NOSZTICZIUS Z., HORSTHEMKE W., MCCORMICK, W. D., SWINNEY H. L., TAM W. Y.: Sustained chemical waves in an angular gel reactor: a chemical pinwheel, Nature, 329(1987), 619-620.
  • [20] NOVIKOV I. I.: The efficiency of atomic power stations, Nucl. Energy II, 7(1958), 125-128. [English translation from At. Energ. 3 (1957), 409-412].
  • [21] PONTRYAGIN L. S., BOLTYANSKI V. A., GAMKRELIDZE R. V., MISCHENKO E. F.: The mathematical theory of optimal processes, Interscience, New York 1982.
  • [22] RUND H.: The Hamilton-Jacobi theory in the calculus of variations, Van Nostrand, London 1966.
  • [23] SIENIUTYCZ S.: The constancy of a Hamiltonian in a discrete optimal process, Reports of Inst. of Chem. Engng. Warsaw Tech. Univ. 2(1973), 399-429.
  • [24] SIENIUTYCZ S.: Examples of one-dimensional variational problems for selected fluidization processes, (Heating and sorption), Inż. Chem., 5(1975), No. 3, 651-661.
  • [25] SIENIUTYCZ S.: A general theory of optimal discrete drying processes with a constant Hamiltonian, [in:] Drying 84, edited by A. Mujumdar, Hemisphere, New York 1984.
  • [26] SIENIUTYCZ S.: Optimization in process engineering, 2-nd edn., Wydawnictwa Naukowo Techniczne, Warszawa 1991.
  • [27] SIENIUTYCZ S.: Hamilton-Jacobi-Bellman theory of dissipative thermal availability, Phys. Rev. E, 56(1997), 5051-5064.
  • [28] SIENIUTYCZ, S.: Endoreversible modeling and optimization of thermal machines by dynamic programming, [in:] Advance in Recent Finite Time Thermodynamics, ed. Ch. Wu, Nova Science, New York 1999.
  • [29] SIENIUTYCZ S.: Optimal control for multistage endoreversible engines with heat and mass transfer, J. of Non-Equilibrium Thermodynamics, 24(1999), 40-74.
  • [30] SIENIUTYCZ S.: Dynamic programming approach to a Fermat type principle for heat flow, Int. J. Heat Mass Transfer, (1999), submitted.
  • [31] SIENIUTYCZ S., BERIS A. N.: A nonequilibrium internal exchange of energy and matter and its Onsager's-type variational theory of relaxation, Intern. J. Heat and Mass Transfer, 42(1999), 2695-2715.
  • [32] SIENIUTYCZ S., FARKAS H.: Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory, Chem. Eng. Sci., 52(1997), 2927-2945.
  • [33] SIENIUTYCZ S., SZWAST Z.: Practice in optimization: process problems, Wydawnictwa Naukowo Techniczne, Warszawa 1982, 219-225.
  • [34] SIENIUTYCZ S., SZWAST Z.: A discrete algorithm for optimization with a constant Hamiltonian and its application to chemical engineering, Intern. J. Chem. Engng., 23(1983), 155-166.
  • [35] SIMON P. L., FARKAS H.: Geometric theory of trigger waves – A dynamical system approach, J. Math. Chem., 19(1996), 301-315.
  • [36] SZWAST, Z.: Discrete algorithms of maximum principle with constant Hamiltonian and their selected applications in chemical engineering, PhD Thesis. Institute of Chemical Engineering at the Warsaw University of Technology, Warszawa 1979.
  • [37] SZWAST Z.: Enhanced version of a discrete algorithm for optimization with a constant Hamiltonian, Inż. Chem. Proc., 3(1988), 529-545.
  • [38] SZWAST Z., SIENIUTYCZ S.: Exergy approach to optimization of some processes of heat and mass transfer, Florence World Energy Research Symposjum, FLOWERS'97, Italy, Florence, 30 July-1 August 1997, 985-994.
  • [39] TAN A., HOLLAND R. L.: Tangent law of refraction for heat conduction through an interface and underlying variational principle, Am. J. Phys., 58(1990), 988-991.
  • [40] VASQUEZ D. A., HORSTHEMKE W.: Chemical waves in a continuously fed reactor: Numerical studies of the chemical pinwheel, J. Chem. Phys., 80(1991), 3829-3834.
  • [41] WINFREE A. T.: Spiral waves of chemical activity, Science, 175(1972), 634-676.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0055-1794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.