PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of a polydisperse two-phase jet

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania numeryczne polidyspersyjnej strugi dwufazowej
Języki publikacji
EN
Abstrakty
EN
Low emissions gas turbine combustors will demand fuel injection systems that are efficient in the accomplishment of the mixing of fuel and air in the shortest possible residence time. This paper describes a computational study of a polydisperse two-phase turbulent jet, which is the basic configuration to analyze how the various parameters influence the size distribution and the dispersion of the droplets in the injection process. An Eulerian frame for the for the gas phase was used in conjunction with a Lagrangian approach to describe both interphase slip and turbulence on particle motion. Good agreement of the computations with the experimental data is obtained for both the gas and the particles turbulence modulation and anisotropy effects were introduced and were found to be very important to the successful performance of the computational method. The exchange of monumentum and turbulence energy between the two phases was shown to play a decisive role on the flow development. The predictions confirmed the measurements and showed that the particles do not follow the turbulent gas flow, but they affect it significantly. Considerably high values of the radial velocity were detected around the centerline far from the jet exit where the velocity of the particles lags that of the fluid, that seems to be associated with the effect of shear induced lift forces.
PL
Przedstawiono studium komputerowe polidyspersyjnej dwufazowej strugi turbulentnej, które jest bazą wyjściową do oceny wpływu różnych parametrów na rozkład średnicy kropel podczas wtrysku do ośrodka gazowego. Wykorzystano Eulerowską analizę do fazy gazowej oraz analizę Lagrange'a do obliczania drogi cząstek. Uzyskane wyniki obliczeniowe są zgodne z eksperymentalnymi. Turbulencja i niejednorodność średnic kropel mają istotny wpływ na rozwój strumienia. Stwierdzono także, że składowe promieniowe prędkości z daleka od otworu rozpylacza uzyskują wysokie wartości.
Słowa kluczowe
Rocznik
Tom
Strony
113--125
Opis fizyczny
Bibliogr. 41 poz.,
Twórcy
autor
  • University of Beira Interior, Aerospace Sciences Departament Rua Marques d'Avila e Bolama, 6200 COVILHA, Portugal
Bibliografia
  • [1] FAETH, G.M., Evaporation and Combustion of Sprays, Prog. Energy Combust. Sci., vol. 9, pp. 1–76, 1983.
  • [2] FAETH, G.M., Mixing, Transport and Combustion in Sprays, Progress Energy Combustion Sci., vol. 13, pp. 293-345, 1987.
  • [3] FAETH, G.M., Recent Advances in Modeling Particle Transport Properties and Dispersion in Turbulent Flow, Proceedings of the ASME-JSME Thermal Engineering Conference, vol. 2, ASME, New York, pp. 293-345, March 1983.
  • [4] CROWE, C.T., Review-Numerical Models for Dilute Gas-Particle Flows, ASME Journal of Fluids Engineering, vol. 104, No. 9, pp. 297-303, 1982.
  • [5] SHIROLKAR, J.S., COIMBRA, C.F.M., and QUEIROZ MCQUAY, M., Fundamentals Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows, Prog. Energy Combusti. Sci., Vol. 22, pp. 363-309,1996.
  • [6] TSUJI, Y. and MORIKAWA, Y., IDV Measurements of an Air-Solid Two-Phase Flow in a Horizontal Pipe, Journal of Fluid Mechanics, vol. 120, pp. 385-409, 1982.
  • [7] TSUJI, Y., MORIKAWA Y., and SHOMI H., LDV Measurements of an Air-Solid Two-Phase Flow in a Vertical Pipe, Journal of Fluid Mechanics, vol. 139, pp. 417-434, 1984.
  • [8] HISHIDA, K., ANDO A., and MAEDA, M., Experiments on Particle Turbulent Dispersion in a Turbulent Mixing Layer, Int. J. Multiphase Flows, vol. 18, No. 2, pp. 181-194, 1992.
  • [9] HISHIDA, K., ANDO, A., HAYAKAMA, A. and MAEDA, M., Turbulent Flow Characteristics of Dispersed Two-Phase Flow in Plane Shear Layer, Applications of Laser Anemometry to Fluid Mechanics, ed. By Adrian et al., Springer Verlag, pp. 189-205, 1989.
  • [10] MODARESS, D.T., WUERDER and ELGOBASHI, S., An Experimental Study of a Turbulent Round Two-Phase, Jet, AIAA Paper no. 82-0964, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, 1982.
  • [11] MODARESS, D.T., and ELGOBASHI, S., Two Component IDA Measurements in a Two-Phase Turbulent Jet, AIAA Journal, Vol. 22, No. 5, pp. 624-630, 1984.
  • [12] SHUEN, J.S., SOLOMON, A.S.P., ZHANG, Q.F., and FAETH, G.M., Structure of a Particle-Laden Jets: Measurements and Predictions, AIAA Journal, Vol. 23, No. 3, pp. 396-404, 1985.
  • [13] SHEEN, H.J., Jou B.M., and LEE Y.T., Effect of Particle Size on a Two-Phase Turbulent Jet, Experimental Thermal and Fluid Science, Vol. 8, 315-327, 1994.
  • [14] FLECKHAUS, D., HISHIDA, K., and MAEDA, M., Effect of Laden Solid Particles on the Turbulent Flow Structure of a Round Jet, Experiments in Fluids, Vol. 5, pp. 323-333, 1987.
  • [15] MOSTAFA, A.A., and MONGIA, H.C., On the Modeling of Turbulent Evaporating Sprays: Eulerian versus Lagrangian Approach, Int. J. Heat Mass Transfer, Vol. 30, No. 12, pp. 2583-2593, 1987.
  • [16] TSUл, Y., MORIKAWA, Y., TANAKA, T., KARIMINE, K., and NISHIDA, S., Measurement of an Axisymmetric Jet Laden With Coarse Particles, J. Multiphase Flow, Vol. 14, No. 5, pp. 565-574, 1988.
  • [17] ZOLTANI, C.K., and BICEN A.F., Velocity Measurements in a Turbulent, Dilute, Two-Phase Jet, Experiments in Fluids, Vol. 9, pp. 295-300, 1990.
  • [18] SHEEN, H.J., JOU B.M., and LEE Y.T., Effect of Particle Size on a Two-Phase Turbulent Jet, Experimental Thermal and Fluid Science, Vol. 8, pp. 315-327, 1994.
  • [19] HETSRONI, G. and SOKOLOV, M., Distribution of Mass, Velocity and Intensity of Turbulence in a Two-Phase Turbulent Jet, Journal of Applied Mechanics, Vol. 38, No. 2, pp. 315-327, June 1971.
  • [20] LEVY, Y., and LOCKWOOD, F.C., Velocity Measurements in a Particle Laden Turbulent Free Jet, Combustion and Flame, Vol. 40, pp. 333-389, 1981.
  • [21] MODARRESS, D., TAN, H., and ELGHOBASHI, S., Two-Component IDA Measurement in a Two-Phase Turbulent Jet, AIAA Journal, Vol. 22, pp. 624-630, May 1984.
  • [22] SOMMERFELD, M., Particle Dispersion in Turbulent Flow: the Effect of Particle Size Distribution, Part. & Part. Syst. Charact., Vol. 7, pp. 209-220, 1990.
  • [23] YULE, A., Ah SENG, C., FELTON, P.G., UNGUT, A., and CHIGIER, N.A., A Study of Vaporising Fuel Sprays by Laser Techniques, Combustion and Flame, Vol. 44, pp. 71-84, 1982.
  • [24] Wu, K.J., SANTAVICCA, D.A., and BRACCO, F.V., IDV Measurements of Drop Velocity in Diesel-Type Sprays by Laser Techniques, AIAA Journal, Vol. 22, No. 4, pp. 1263-1270, 1984.
  • [25] SOLOMON, A.S.P., SHUEN, J.-S., ZGANG, Q.F., and FAETH, G.M., Structure of Non-Evaporating Sprays, Part I: Initial Conditions and Neon Properties, AIAA Journal, Vol. 23, No. 10, pp. 1548-1555, 1985.
  • [26] SOLOMON, A.S.P., SHUEN, J.-S., ZHANG, Q.F., and. FAETH, G.M., Structure of Non-Evaporating Sprays, Part II: Drop and Turbulence Properties, AIAA Journal, Vol. 23, No. 11, pp. 1724-1729, 1985.
  • [27] TISHKOFF, J.M., HAMMOND, D.C., and CHRAPLYOY, A.R., Diagnostic Measurements of Fuel Spray Dispersion, Journal of Fluids Engineering, Vol. 104, pp. 313-317, 1982.
  • [28] SOMMERFELD, M., ANDO, A., and QIU, H.-H., The Particle Behaviour in a Confined Swirling Two-Phase Flow, Engeineering Turbulence Modelling and Experiments, ed. W. Rodi and E.N. Ganic, Elsevier, pp. 937-946, 1990.
  • [29] HARDALUPAS, Y., TAYLOR, A.M.K.P., WHITELAW, J.H., Particle Dispersion in a Vertical Sudden-Expansion Flow, Proc. R. Soc. London, A341, pp. 411-442, 1992.
  • [30] HARDALUPAS, Y., TAYLOR, A.M.K.P., WHITELAW, J.H., Velocity and Particle Flux Characteristics of Turbulent Particle-Laden Jets, Proc. R. Soc. London, 1426, pp. 31-78, 1989.
  • [31] HEITOR, M.V., and MOREIRA, A.L.N., Experiments on Polydisperse Two-Phase Turbulent Jets, ICLASS-94, Rouen, France, Paper XI-5, July 1994.
  • [32] LAUNDER B.E., and SPALDING, D.B., The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
  • [33] BARATA, J.M.M., Numerical Study of Single Impinging Jets Through a Crossflow, Journal of Aircraft, Vol. 26, No. 11, pp. 1002-1008, November 1989.
  • [34] LILLEY, D.G., Primitive Pressure-Velocity Code for the Computation of Strongly Swirling Flows, AIAA Journal, Vol. 14, No. 6, pp. 749-756, June 1976
  • [35] LOCKWOOD, F.C., and NAGUIB, A.S., The Prediction of the Fluctuations in the Properties of Free, Round Jet, Turbulent, Diffusion Flames, Combustion and Flame, Vol. 24, pp. 109-124, February 1975.
  • [36] SHUEN, J.S., CHEN, L.D., and FAETH G.M., Evaluation of a Stochastic Model of Particle Dispersion in a Turbulent Round Jet, AIChE Journal, Vol. 19, pp. 167-170, Jan. 1983.
  • [37] GOSMAN, A.D., and IOANNIDES, E., Aspects of Computer Simulation of Liquid-Fueled Combustors, AIAA Paper No. 81-0323, AIAA 19th Aerospace Sciences Meeting, St. Louis, MO, 1981.
  • [38] PATANKAR, S.V., and SPALDING D.B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1805, Oct. 1992.
  • [39] RAJARATNAM, N., Turbulent Jets, Developments in Water Science, 5, Elsevier Scientific Publishing Co., New York, 1976.
  • [40] EICHORN, R., and SMALL S., Experiments on the Lift and Drag of Spheres Suspended in a Poiseuille Flow, Journal of Fluid Mechanics, Vol. 20, Part 3, pp. 513-527, 1984.
  • [41] PURI I., and LIBBY P.A., Droplet Behaviour in Couterflowing Streams, Combustion Science and Technology, Vol. 66, pp. 267-292, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-0055-1708
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.