PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modele LES w badaniach numerycznych procesów spalania w silnikach tłokowych - przegląd literaturowy

Identyfikatory
Warianty tytułu
EN
LES Models for the Numerical Studies of Combustion in Internal Combustion Engines - a Review
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy przedstawiono przegląd literatury w zakresie zastosowania metody symulacji dużych wirów (ang. Large Eddy Simulation) do obliczeń numerycznych spalania w silnikach tłokowych. Jest to znakomite narzędzie obliczeniowe przepływów turbulentnych łączące powszechnie używaną metodę RANS (Reynolds Average Navier Stokes) z DNS (Direct Numerical Simulation). Metoda LES opiera się na zastosowaniu filtra do równań Naviera-Stokesa i wprowadzeniu rozdziału na zjawiska wielkoskalowe (duże wiry) oraz drobno-skalowe. Zjawiska wielko-skalowe są obliczane przez bezpośrednie rozwiązanie przefiltrowanych równań N-S, natomiast drobno-skalowe są modelowane w skali podsiatkowej. Możliwe jest dzięki temu bezpośrednie obliczenie wirów dużych i wirów biorących udział w procesie kaskadowym przekazywania energii. W artykule zawarto dokładny opis metody LES i modeli używanych w skali podsiatkowej. Opisano modele podsiatkowe (SGS) stosowane do modelowania turbulencji wykorzystywane w obliczeniach silników tłokowych. Następnie przedstawiono sposoby rozwiązywania procesu spalania przy użyciu metody LES. Zagadnienie to można rozwiązać w dwojaki sposób: poprzez adaptację modeli spalania z RANS, bądź zastosowanie kinetyki chemicznej wraz modelami spalania w skali podsiatkowej. Głównie dzięki poprawieniu sposobu symulacji turbulencji metoda LES umożliwia uzyskanie lepszych wyników obliczeń w porównaniu z metodą RANS. Dzięki metodzie LES i rozwijającej się technologii komputerowej w najbliższej przyszłości wirtualne silniki będą w stanie w pełni symulować działanie nowych koncepcji systemów spalania przed ich wdrożeniem do produkcji. Wciąż jednak jest wiele problemów do rozwiązania odnośnie modelowania i metod numerycznych.
EN
In this paper a literature review of LES model application to ICE is provided. Large Eddy Simulations (LES) model has become powerful computational tool with application to turbulent flows. It links classical Reynolds Averaged Navier-Stokes (RANS) approach and Direct Numerical Simulation (DNS). This modeling approach computes the large eddies explicitly in a time-dependent simulation using the filtered Navier-Stokes equations. Filtering is essentially a mathematical manipulation of the exact Navier-Stokes equations to remove the eddies that are smaller than the size of the filter. LES method resolves the large flow scales that depend directly on the geometry where small scales are modeled by the sub-grid-scale models. With LES it is possible to resolve the essential part of the flow energy, yielding reliable results. Description of LES and its sub-grid scale models for engine applications is reviewed. For combustion processes two approaches can be used: adaptation of the RANS combustion models or the usa of the chemical kinetics for large scale and combustion models in SGS. The LES model provides better solution than RANS in all aspects of calculations. In the near future due to capabilities of the LES methods and increasing computer power a virtual engine test bench can be created which will be capable of predicting the operation of a new engine concept before it is actually built. There are still a lot of open questions concerning basic modeling, numerical methods and CPU issues which should be answered.
Czasopismo
Rocznik
Strony
111--144
Opis fizyczny
Bibliogr. 93 poz., rys.
Twórcy
autor
  • Politechnika Warszawska, Instytut Techniki Cieplnej 00-665 Warszawa, ul. Nowowiejska 21/25, pjawor@itc.pw.edu.pl
Bibliografia
  • [1]. M.C. Drake, D.C. Haworth, Advanced gasoline engine development using optical diagnostics and numerical modeling, Proceedings of the Combustion Institute 31 (2007) 99-124
  • [2]. P. Priesching, G. Ramusch, J. Ruetz, R. Tatschl, 3D-CFD Modeling of Conventional and Alternative Diesel Combustion and Pollutant Formation - A Validation Study, SAE 2007-0l -1907
  • [3]. J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, NY, 1988.
  • [4]. R.R. Maly, Proc. Combust. Inst. 25 (1994) 111-124.
  • [5]. L. Withrow, G.M. Rassweiler, J. Appl. Phys. 9 (1938) 363-372.
  • [6]. D.W. Lee, NACA, Report No. 653, 1939.
  • [7]. A.M. Rothrock, R.C. Spencer, NACA, Report No. 657, 1939.
  • [8]. J.N. Mattavi, C.A. Amann (Eds.), Combust. Model. Reciproc. Eng., Plenum Press, NY, 1980.
  • [9] D.C. Haworth, M.S. Huebler, S.H. El Tahry, W.R. Matthes, SAE Paper 932712, 1993.
  • [10]. B.A. VanDerWege, Z. Han, C.O. Iyer, R.H. Munoz, J. Vi, SAE Paper 2003-01-3105,2003
  • [11]. C.O. Iyer, Z. Han, J. Vi, SAE 2004-01-0550
  • [12]. G.A. Szekely, A. Alkidas, SAE Paper 2005-01- 1937
  • [13]. G. Blokkeel, E. Samson. T. Souleres, 7th International Symposium on Internal Combustion Diagnostics, Baden-Baden, 2006.
  • [14]. K. Frohlich, K. Borgmann, J. Liebl, 24t11 International Vienna Motor Symposium, Vienna, 2004.
  • [15]. A. Witt, W. Kern, 6th International Symposium on Internal Combustion Diagnostics, Baden-Baden, 2004.
  • [16]. Ch. Schwarz, E. Schunemann, B. Durst, J. Fischer, A. Witt, SAE Paper 2006-01-1265
  • [17]. J. Fischer, W. Kern, G. Unterweger, A. Witt, B. Durst, E. Schunemann, Ch. Schwarz, 7th International Symposium on Internal Combustion Diagnostics, Baden-Baden, 2006.
  • [18]. F. Altenschmidt, D. Bertsch, M. Bezner, N. Laudenbach, M. Zahn, U. Schaupp, A. Kaden, 7th International Symposium on Internal Combustion Diagnostics, Baden-Baden, 2006.
  • [19]. M. Yao, Z. Zheng, H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progress in Energy and Combustion Science 35 (2009): 398 - 437.
  • [20]. S. De Zilwa, R. Steeper, SAE Paper 2006-01-0025
  • [21]. H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (2002) 253-280
  • [22]. S.M. Walton, X. He, B.T. Zigler, M.S. Wooldridge, A. Atreya, An experimental investigation of iso-octane ignition phenomena, Combust. Flame (2006)
  • [23]. Amsden A.A., O'Rourke P.J., Butler T.D. KIVA-II: a computer program for chemically reactive flows with sprays. Los Alamos National Laboratory Report LA-11560-MS, 1989
  • [24]. Khalighi B., El Tahry S.H., Haworth D.C., Huebler M.S. Computation and measurement of flow and combustion in a four-valve engine with intake variations. SAE Paper No. 950287, 1995
  • [25]. J.J.M. Smits, Modeling of a Fluid Flow in a Internal Combustion Engine, Report number WVT2006.22
  • [26]. El Tahry S.H., Haworth D.C. A perspective on the state-of-the-art in IC engine combustion modeling. In: SIAM Sixth International Conference on Combustion, New Orleans, LA. 1996.
  • [27]. Haworth D.C., El Tahry S.H., Huebler M.S. A global approach to error estimation and physical diagnostics in multidimensional computational fluid dynamics. Int J Num Methods in Fluids 1993;17:75-97.
  • [28]. V. Moureau, I. Barton, C. Angelberger, T. Poinsot. Towards Large Eddy Simulation in Internal-Combustion Engines: simulation of a compressed tumble flow. SAE International 2004-01-1995
  • [29]. Celik, I., Yavuz, I. & Smirnov, A. Large Eddy Simulations of In-Cylinder Turbulence for ICEngines: A Review. Int. Journal of Engine Research, Vol. 2, No.2, 2001
  • [30]. B. Enaux, V. Granet, O. Vermorel, C. Lacour, C. Pera, C. Angelberger, T. Poinsot, LES study of cycle-to-cycle variations in a spark ignition engine, Proceedings of the Combustion Institute 33 (2011) 3115-3122
  • [31]. O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, D. Veynante, Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combustion and Flame 156 (2009) 1525-1542
  • [32]. D. Goryntsev, Large Eddy Simulation of the Flow and Mixing Field in an Internal Combustion Engine, Praca Doktorancka, Uniwersytet Techniczny Darmstadt 2007
  • [33]. D.C. Hawortha, K. Jansen. Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines. Computers & Fluids 29 (2000) 493±524
  • [34]. H. Gen Fujimoto, T. Hori, J. Senda. 3-D Simulation of Non-vaporating Diesel Spray by Means of LES. 2006 Japan-China Seminar on Preparation and Utilization of Clean Fuels and their Control of Combustion and Emissions (21-22 Aug. 06)
  • [35]. Pope S B 2004. Ten questions concerning the large-eddy simulation of turbulent flows New J. Phys. 6 1-24
  • [36]. Oran E.S., Boris J.P. Numerical Simulation of Reactive Flow. 2nd edition, 2001. Cambridge University Press.
  • [37]. Ismail Celik, RANS/LES/DES/DNS: The Future Prospects of Turbulence Modeling, Journal of Fluids Engineering, 2005, Vol. 127
  • [38]. Syed Ameer Basha, K. Raja Gopal; In-cylinder fluid flow, turbulence and spray models - A review, Renewable and Sustainable Energy Reviews
  • [39]. A. Neophytou, E. Mastorakos, R.S. Cant, DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers, Combustion and Flame 157 (2011) 1071-1086
  • [40]. N. Babkovskaia, N.E.L. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion, Journal of Computational Physics 230 (2011) 1-12
  • [41]. P.R. Spalart, Strategies for turbulence modelling and simulations, International Journal of Heat and Fluid Flow 21 (2000) 252-263.
  • [42]. B. Basara, S. Krajnović, S. Girimaji, PANS vs. LES for computations of the flow around a 3D bluff body, Proceedings of the 7th International ERCOFTAC Symposium on " Engineering Turbulence Modelling and Measurements" (2008).
  • [43]. Ch. Hasse, V. Sohm, B. Durst, Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Computers & Fluids 39 (2010) 25-48.
  • [44]. S. Jakirlic, G. Kadavelil, M. Kornhaas, M. Schafer, D.C. Sternel, C. Tropea, Numerical and physical aspects in LES and hybrid LES/RANS of the turbulent flow separation in a 3-D diffuser, International Journal of Heat and Fluid Flow 31 (2010) 820-832.
  • [45]. S. Jakirlic, S. Saric, B. Kadavelil, B. Basara, B. Chaouat, SGS modelling in LES of wallbounded flows using transport RANS models: from a zonal to seamless hybrid LES/RANS method, 6th Int. Symp. On Turbulence and Shear Flow Phenomena (2009).
  • [46]. Hasse, C. et al., Detached eddy simulation of cyclic large scale fluctuations, Int. J. Heat Fluid Flow(2008)
  • [47]. J. Janicka, A. Sadiki. Large eddy simulation of turbulent combustion systems. Proceedings of the Combustion Institute 30,537-547,2005
  • [48]. T. Miyauchi, M. Tanahashi, Current State and Perspective of Turbulent Combustion Research, Journal of Fluid Science and Technology, Vol. 2, No.3, 2007.
  • [49]. Horng-Wen Wu, Shiang-Wuu Perng, LES analysis of turbulent flow and heat transfer in motored engines with various SGS models, International Journal of Heat and Mass Transfer 45 (2002) p: 2315 - 2328.
  • [50]. U. Piomelli, High Reynolds number calculation using the dynamic subgrid scale stress model, Phys. Fluids A 5 (6) (1993) 1484-1490
  • [51]. M. Gennano, U.Piomelli, P.Moin, W.Cabot, A dynamic subgrid-scale eddy viscosity model, Summer Program, Center for Turbulence Research, Stanford University, Stanford, CA, 1990.
  • [52]. A. Devesa, J. Moreau, J. Helie, V. Faivre, T. Poinsot, Initial conditions for Large Eddy Simulations of piston engine flows, Computers & Fluids 36 (2007) p: 701 -713.
  • [53]. K. Naitoh, T. Itoh, Y. Takagi, K. Kuwahara, Large Eddy Simulation of Premixed- Flame In Engine based on the Multi - Level Formulation and the Renormalization Group Theory, SAE 920590.
  • [54]. O. Colin, K. Truffin, A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proceedings of the Combustion Institute 33 (2011) 3097 -3104.
  • [55]. G. Lecocq, S. Richard, J.B. Michel, L. Vervisch, A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre-ignition in piston engines, Proceedings of the Combustion Institute 33 (2011) 3105-3114.
  • [56]. P. Wang, X.S. Bai, Large Eddy Simulation of Turbulent Premixed Flames using Level-Set G-Equation, Proc. Combust. Inst., Vol 30 (2005),582-591.
  • [57]. V. Moureau, B.Fiorina, H. Pitsch, A level set formulation for premixed combustion LES considering the turbulent flame structure, Combustion and Flame, Volume 156, Pages 801-812.
  • [58]. H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combustion and Flame 143 (2005), p" 587-598.
  • [59]. H. Pitsch, O. Desjardins, G. Balarac, M. Ihme, Large-eddy simulation of turbulent reacting flows, Progress in Aerospace Sciences 44 (2008) 466-478.
  • [60]. Kerstein, A. R. and Ashurst, W. T, Field equation for Interface propagation in an Unsteady Homogeneous Flow Field, Phys. Rev. A, Vol 37 (1988), 2758-2731
  • [61]. Im, H. G., Lund, T S. and Ferziger, J. H., Large Eddy Simulation of Turbulent Front Propagation with Dynamic Subgrid Models, Phys. Fluid, Vol.9 (1997), 3826-3833.
  • [62]. H. Pitsch, L. Duchamp De Lageneste, Large Eddy Simulation of Premixed Turbulent Combustion using a Level-Set Approach, Proc. Combust. Inst., Vol 29 (2002), 2001-2008.
  • [63]. F.A. Jaberi, P.J. Colucci, S. James, P. Givi, Pope, S.B., Filtered Mass Density Function for Large Eddy Simulation of Turbulent Reacting Flows, J. Fluid Mech., Vol 401 (1999),85-121
  • [64]. L.Y.M. Gicquel, P. Givi, F.A. Jaberi, S.B. Pope, Phys. Fluids 14 (3) (2002) 1196-1213
  • [65]. Sheikhi, M.R.H., Drozda, TG., Givi, P., Jaberi, F.A. and Pope, S.B., Large Eddy Simulation of a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D), Proc. Combust. Inst., Vol 30 (2005), 549-556
  • [66]. P. Givi, AIAA Paper 2003-5081
  • [67]. Colin, O., Ducros, F.,Veynante, D., Poinsto, T, A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion, Phys. Fluid, Vol 12, No 7 (2000), 1843-1863
  • [68] L. Thobois, R. Lauvergne, T Poinsot, Using LES to Investigate Reacting Flow Physics in Engine Design Process, SAE 2007-01-0166
  • [69]. M. Żbikowski, D. Makarov, V. Molkov, Numerical simulations of large-scale detonation tests in the RUT facility by the LES model, Journal of Hazardous Materials 181 (2010) 949-956.
  • [70]. Spalanie i Paliwa, Red. W. Kordylewski, Oficyna Wydawnicza Politechniki Wrocławskiej 2011
  • [71]. V. Moureau, I. Barton, C. Angelberger, T Poinsot, Towards Large Eddy Simulation in Internal Combustion Engines: simulation of a compressed tumble flaw, 2004-01-1995
  • [72]. J.H. Chen, C.S. Yoo, R. Sankaran, J.c. Oefelein, High-fidelity simulations for clean and efficient combustion of alternative fuels, Journal of Physics: Conference Series 125 (2008) 012028
  • [73]. D. Goryntsev, A. Sadiki, M. Klein, J. Janicka, Large eddy simulation based analysis of the effects of cycle-tocycle variations on air-fuel mixing in realistic DISI IC-engines, Proceedings of the Combustion Institute 32 (2009) p:2759 - 2766.
  • [74]. I. Celik, I. Yavuz, A. Smirnov, J. Smith, E.Amin, A. Gel, Prediction of In-Cylinder Turbulence for IC Engines, Combustion Science and Technology, 153:1, 339-368.
  • [75]. R. Yu, X.S. Bai, L. Hildingsson, A. Hultqvist, P. Miles, Numerical and Experimental Investigation of Turbulent Flows in a Diesel Engine, SAE 2006-01-3436
  • [76]. B. Basara, S. Krajnovic, S.M. Frolov, Improving cost-effectiveness of LES by using nonreflecting boundary conditions: the flow around simplified ICE2 train, 6th Int. Symp. On Turbulence and Shear Flow Phenomena (2009).
  • [77]. S. Krajnovic, B. Basara, LES of the flow around an ahmed body with active flow control, 2nd Int. Conf. on Turbulence and Interactions (2009).
  • [78]. S. Krajnovic, J. Osth, B. Basara, LES of active flow control around an ahmed body with active flow control, Conference on Modelling Fluid Flow (CMFF'09) (2009).
  • [79]. K.K.J. Ranga Dinesh, A.M. Savill, K. W Jenkins, M.P. Kirkpatrick, LES of intermittency in a turbulent round jest with different inlet conditions Computer & Fluids 39 (2010) 1685-1695.
  • [80]. R. Payri, B. Tormos, J. Gimeno, G. Bracho, The potential of Large Eddy Simulation (LES) code for the modeling of flow in diesel injector, Mathematical and Computer Modelling 52 (2010) 1151-1160.
  • [81]. R. Payri, B. Tormos, J. Gimeno, G. Bracho, Large Eddy Simulation for high pressure flows: Model extension for compressible liquids, Mathematical and Computer Modelling, 2010.
  • [82]. W.P. Jones, S. Lyra, A.J. Marquis, Large Eddy Simulation of a droplet laden turbulent mixing layer, International Journal of Heat and Fluid Flow 31 (2010) 93-100.
  • [83]. W.P. Jones, S. Lyra, A.J. Marquis, Large Eddy Simulation of evaporating kerosene and acetone sprays. International Journal of Heat and Mass Transfer 53 (2010) 2491-2505.
  • [84]. Tsukasa Hori, Takahiro Kuge, Jiro Senda, Hajime Fujimoto, Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by use of KIVA-LES, SAE 2007-01-0247
  • [85]. S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, D. Veynante, Towards large eddy simulation of combustion in spark ignition engines, Proceedings of the Combustion Institute 31 (2007) p: 3059 - 3066.
  • [86]. O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, Predicting cyclic variability in a 4valve SI engine using LES and the AVPB CFD code, International Multidimensional Engine Modeling User's Group Meeting, April 2007
  • [87]. M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, LES of an ignition sequence in a gas turbine engine, Combustion and Flame 154 (2008) 2-22.
  • [88]. D. Lee, E. Pomraning, Ch.J. Rutland, LES modeling of Diesel Engines, SAE 2002-01-2779
  • [89]. Y.H. Li, S.-C. Kong, Diesel Combustion modellin using LES turbulence model with detailed chemistry, Combustion Theory and Modelling, 12: 2, 205 - 219.
  • [90]. R.J. Tabaczynski, C.R. Ferguson, K. Radhakrishnan, A Turbulent Entrainment Model for Spark-Ignition Engine Combustion, SAE 740191,1974.
  • [91]. B. Hu, R. Jhavar, S. Singh, R.D. Reitz, Ch.J. Rutland, Combustion Modeling of Diesel Combustion with Partially Premixed Conditions, SAE 2007-01-0163.
  • [92]. B. Hu, Ch.J. Rutland, T.A. Shethaji, Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations, SAE 2008-01-0958
  • [93]. O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, D. Veynante S. Richard. Towards large eddy simulation of combustion in spark ignition engines. Proceedings of the Combustion Institute 31 (2007) 3059-3066.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATD-0003-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.