Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-article-BATD-0003-0011

Czasopismo

Archiwum Spalania

Tytuł artykułu

Modele chemiczne procesu spalania metanu jako głównego składnika gazu ziemnego

Autorzy Wilk, M.  Magdziarz, A. 
Treść / Zawartość
Warianty tytułu
EN Chemical models of methane combustion process as main component of natural gas
Języki publikacji PL
Abstrakty
PL Najpowszechniej stosowanym paliwem gazowym jest gaz ziemny, którego głównym składnikiem jest metan. Wyniki badań eksperymentalnych i modelowych potwierdzają, że mechanizm utleniania czystego metanu wystarczająco przybliża proces spalania gazu ziemnego. W celu pełnego zrozumienia kinetyki utleniania prostych paliw, takich jak metan, należy dokładnie określić chemizm ich spalania. Zagadnienie modeli chemicznych procesu spalania metanu było badane przez wielu naukowców takich jak Warnatz, Frenklach, Burcat, Konnov, Miller i Bowmann. W internecie dostępne są na przykład modele mechanizmów według Uniwersytetu w Leeds, Gas Research Institute, Konnova. Ideą tych projektów jest pełny dostęp do aktualnych baz termodynamicznych oraz możliwość testowania i porównywania wyników modelowania procesów spalania paliw.
EN Natural gas, which the principal component is methane. is the most popular gas fuel. The experimental and numerical data confirm the methane oxidation mechanism well verified the natural gas oxidation. To understand the simple fuels kinetic oxidation it is important to know the chemistry of its combustion. The chemistry of fuels combustion is investigated in many laboratories around the world (Warnatz, Frenklach, Burcat, Konnov. Miller i Bowmann). On the Web site are presented some of the combustion mechanisms e.g. Leeds University, Gas Research Institute and Konnov. The idea of availability of the combustion mechanisms through internet is a possibility of testing and relating information about combustion processes.
Słowa kluczowe
PL mechanizm utleniania   paliwa gazowe   metan  
Wydawca Polski Instytut Spalania
Czasopismo Archiwum Spalania
Rocznik 2010
Tom Vol. 10, nr 1-2
Strony 51--63
Opis fizyczny Bibliogr. 44 poz., tab.
Twórcy
autor Wilk, M.
autor Magdziarz, A.
  • Akademia Górniczo-Hutnicza w Krakowie Katedra Techniki Cieplnej i Ochrony Środowiska Al. Mickiewicza 30, 30-059 Kraków, mwilk@metal.agh.edu.pl
Bibliografia
[1]. Chomiak.J.: Combustion: A study in theory, facts and application, Abacus Press, New York, (1990)
[2]. Kordylewski W. i in.: Spalanie i paliwa, Oficyna Wyd. Pol. Wrocławskiej, Wrocław, (2008)
[3]. Glarborg P., Alzueta M. U., Dam-Johansen K., Miller J .A.: Kinetic modeling of hydrocarbon/ nitric oxide interactions in a flow reactor, Combustion and Flame, 115, (1998), s.1-7
[4]. Szlęk A.: Modelowanie matematyczne kinetyki chemicznej spalania gazów, Wydawnictwo Politechniki Śląskiej, Gliwice, (2004)
[5]. Warnatz J., Maas U., Dibble R.W: Combustion, physical and chemical fundamentals, modelling and simulation, experiments, pollutant formation, Springer, (2006)
[6]. Hughes K.J., Turanyi T, Clague A.R., Pilling M.J.: Development and testing of a comprehensive chemical mechanism for the oxidation of methane, International Journal of Chemical Kinetics, .13, (2001), s. 513-538
[7]. Burcat A.: http://ae-www.technion.ac.il/staff/pages/burcat.htm
[8]. Miller .J.A, Bowman C.T.: Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy Combustion Science, 15, (1989), s. 287-338
[9]. Westbrook C.K., Dryer F.L.: Chemical kinetics and modelling of combustion process, Eighteenth International Symposium on Combustion, (1981), s. 749-767
[10]. Baluch D.L., Cobos C.J., Cox R.A., Frank P., Hayman G., Just T.H., Kerr J.A., Murrells T., Pilling M.J., Troe J., Walkner R.W., Warnatz J.: Summary table of evaluated kinetic data for combustion modelling: Supplement 1, Combustion and Flame, 98, (1994), s. 59-79
[11]. Petersen E. L., Davitson D.F., Hanson R.K.: Kinetics modeling of shock-ignition in low-dilution CH4/02 mixtures at high pressures and intermediate temperatures, Combustion and Flame, 117, (1999), s. 272-290
[12]. Warnatz J.: Chemistry of high temperature combustion of alkanes up to octane, Twentieth International Symposium on Combustion, (1994), s. 845-856
[13]. Warnatz,.J.: Rate coefficients in the C/H/O system Combustion Chemistry (ed. W.C. Gardiner, Jr.) Springer- Verlag, New York, ( 1984)
[14]. Jager W., Rannacher R., Warnatz J.: Reactive flows, diffusion and transport, Springer- Verlag, Berlin, (2007)
[15]. Gardiner W.C: Gas-phase combustion chemistry, Springer- Verlag, New York, (2000)
[16]. Hughes K.J., Turanyi T., Clague A.R., Pilling MJ.: http://garfield.chem.elte.hu/Combustion/Combustion .html
[17]. Loeffler G., Wargadalam V.J., Winter F., Hofbauer H.: Chemical kinetic modelling of the effect on NO on the oxidation of CH4 under fluidised bed combustor conditions, Fuel, 81, (2002), s. 855-860
[18]. Eaton A.M., Smoot L.D.,Hill S.C., Eatoung C. N.: Components, formulations, solution, evaluation and application of comprehensive combustion models, Progress in Energy Combustion Science, 25, (1999), s. 387-437
[19]. Simmie .J.M.: Dctailed chemical kinetic models for the combustion of hydrocarbon fuels, Progress in Energy Combustion Science, 29, (2003), s. 599-634
[20]. Smith G.P., Golden D.M., Frenklach M., Moriarty N.W, Eiteteer B., Goldenbcrg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C. Jr., Lisyanskii V.V. and Qin Z., (1999) GRI-Mech 3.0: http://www.me.berkeley.edu/gri_mcch
[21]. Konnov, A.A: http://homepages.vub.ac.be/~akonnov/
[22]. Yu C. L., Wang C., Frenklach M.: Chemical kinetics of methyl oxidation by molecular oxygen, Journal of Physical Chemistry, 99, (1995), s. 17377-14387
[23]. Wang H., Frenklach M.: A detailed kinetic modeling of aromatics formation in laminar premixed acetylene and ethylene flames, Combustion and Flame. 110. (1997). s. 173-221
[24]. Konnov. A.A. Dyakov I. V: Measurement of propagation speeds in adiabatic flat and cellular premixed flames of C2H6+O2+CO2, Combustion and Flame. 136, (2004), s. 371-376.
[25]. Konnov, A.A, Dyakov I. V: Measurement of burning velocity in adiabatic cellular methaneoxygen-carbon dioxide flames, Proceedings of the Third Mediterranean Combustion Symposium, Marrakech, Morocco. (2003), s. 1-10
[26]. Coppens F.H.V., De Ruyck J., Konnov A.A.: The Effects of composition on the burning velocity and nitric oxide formation in laminar premixed flames of CH4+H2+O2+N2. Combustion and Flame, 149, (2007). s. 409-417
[27]. Konnov A.A: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame, 156, (2009). s. 2093-2105
[28]. Konnov, A.A., De Ruyck, J.: Temperature-dependent rate constant for the reaction NNH+O&#8594NH+NO, Combustion and Flame, 125, (2001), s. 1249-1255
[29]. Konnov A.A., De Ruyck J.: Kinetic modeling of the decomposition and names of hydrazine. Combustion and Flame. 124, (2001), s. 106-126
[30]. Borisov A.A., Dragalova E. V., Zamanskii V.M., Lisyanskii V.V., Skachkov G.I.: Kostea K.: Mechanism and kinetics of methane self-ignition. Khimicheskaya Fizika. 4, ( 1982). s. 536-43
[31]. Borisov A.A., Dragalova E.V., Zamanskii V.M., Lisyanskii V.V. Skachkov G.I.: Interaction of methyl radicals with oxygen, Khimicheskaya Fizika, II, (1982). s.1565-70.
[32]. Borisov A. A., Zamanshii V. M., Konnov A. A., Lisyanskii V. V., Rusakov S. A .. Skachkov G. I.: High-temperature ignition of an ethanol and acetaldehyde mixtures with oxygen. Khimicheskaya Fizika 4 (11). (1985). s. 1543-50
[33]. Borisov A. A., Gol'denberg M. Ya .. Zamanskii V. M., Konnov A.A., Lisyanskii V.V: Rate constants of monomolecular conversion of acetaldehyde and ethylene oxide. Khimicheskaya Fizika, 5 (3), (1986), s. 366-71
[34]. Borisov A. A., Zamanskii V. M., Konnov A. A., Skachkov G. I.: Mechanism of high-temperature oxidation of acetaldehyde, Khimicheskaya Fizika, 6 (3), (1987). s. 407-9
[35]. Borisov A. A., Zamanskii V. M., Konnov A.A.,., Lisyanskii V. V., Skachkov G. I.: Pyrolysis and combustion of ethylene oxide, Khimicheskaya Fizika. 6 (8), (1987), s. 1107-12.
[36]. Borisov A. A., Zamanskii V. M., Lisyanskii Y.V., Rusakov S. A.: High-temperature decomposition of methanol, Khimicheskaya Fizika. 7 (6). (1988). s. 773-6
[37]. Borisov A. A., Zamanskii V. M., Lisyanskii V. V., Skachkov G. I., Troshin K. Ya., Baranov I. M.: Kinetics of energy release during high-temperature combustion of hydrocarbon mixtures with air and oxygen, Khimicheskaya Fizika, 7(5). (1988). s. 665-73
[38]. Borisov A. A., Zamanskii V. M., Konnov A. A., Lisyanskii V. V., Rusakov. S.A., Skachkov G. I.: High-temperature pyrolysis of ethanol, Khimicheskaya Fizika, 8 (I), (1989). s. 73-84
[39]. Borisov A. A., Zamanskii V. M., Lisyanskii V. V. Troshin K. Ya.: Promotion of branching chain reactions. II. Acceleration of chain branching, Khimicheskaya Fizika II (9). (1992). s. 1235-44
[40]. Ranzi E., Sogaro A., Gaffuri P., Pennati G., Westbrook CK., Pitz W.J.: A new comprehensive reaction mechanism for combustion of hydrocarbon fuels, Twenty-fifth International Symposium on Combustion, (1994)
[41]. Rarevelli T., Goldaniga A., Zappella L., Ranzi E., Dagaut P .. Cathonnet M.: An experimental and kinetic modeling study of propyne and allene oxidation. Proceedings of the Combustion Institute, 28, (2000). s. 2601-2608
[42]. Wang H .. Chen Y: Comprehensive chemical kinetic modeling of turbulent methane/air piloted jet flames. Combustion and Flame, 151. (2007). s. 386-390.
[43]. Huang J., Hill P.G .. Bushe WK., Munshi S.R.: Shock tube study of methane ignition enginerelevant condition: experiments and modelling. Combustion and Flame. 136. (20040, s. 25-42
[44]. http://www.sandia.gov/chemkin/
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATD-0003-0011
Identyfikatory