PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On stabilizability-holdability problem for linear discrete time systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consider the following problem. Given a linear discrete-time system, find if possible a linear state-feedback control law such that under this law all system trajectories originating in the non-negative orthant remain non-negative while asymptotically converging to the origin. This problem is called feedback stabilizability-holdabiltiy problem (FSH). If, in addition, the requirement of non-negativity is imposed on the controls, the problem is a positive feedback stabilizability-holdabiltiy problem (PFSH). It is shown that the set of all linear state feedback controllers that make the open-loop system holdable and asymptotically stable is a polyhedron and the external representation of this polyhedron is obtained. Necessary and sufficient conditions for identifying when the open-loop system is not positive feedback R+n-invariant (and therefore there is no solution to the PFSH problem) are obtained in terms of the system parameters. A constructive linear programming based approach to the solution of FSH and PFSH problems is developed in the paper. This approach provides not only a simple computational procedure to find out whether the FSF, respectively the PFSH problem, has a solution or not but also to determine a linear state feedback controller (respectively, a non-negative linear state feedback controller) that endows the closed-loop (positive) system with a maximum stability margin and guarantees the fastest possible convergence to the origin.
Czasopismo
Rocznik
Strony
33--38
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Perth, Australia, V.Rumchev@curtin.edu.au
Bibliografia
  • [1] Berman A., Stern R., Linear feedback, irreducibility and M-matrices, Linear Algebra and its Applications, 1987, Vol. 97, 1-11.
  • [2] Berman A., Neumann M., Stern R., Nonnegative matrices In dynamic systems, Wiley & Sons, New York, 1989.
  • [3] Coll C., Bru R., Hernandez V., Nonnegative holdability and stabilizability of discrete-time linear periodic systems, Linear Algebra and its Applications, 1992, Vol. 7, 164-169.
  • [4] Hennet J.C., Beziat J-P., A class of invariant regulators for discrete-time linear constrained regulation problem, Automatica, 1991, Vol. 27, No. 3, 549-554.
  • [5] Kaczorek T., Stabilization of positive linear systems by state-feedbacks, Pomiary, Automatyka, Kontrola, 1999, No. 3, 2-5.
  • [6] Kaczorek T., Positive 1D and 2D systems, Springer, London, 2002.
  • [7] Luenberger D.G., Introduction to dynamic systems, Wiley, New York, 1979.
  • [8] Mine H., Nonnegative matrices, Wiley, New York, 1988, 34-36.
  • [9] Rumchev V.G., Feedback and positive feedback holdability of discrete-time systems, Systems Science, 2000, Vol. 26, No 3, 15-23.
  • [10] Scrijever A., Theory of linear and integer programming, Wiley and Sons, New York, 1986.
  • [11] Willems F., Heemels W.P.M.H., de Jager B., Stoorvogel A., Positive feedback stabilization of centrifugal compressor surge, Automatica, 2002, Vol. 38, No 2, 311-318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATD-0001-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.