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1. Introduction

Many complicated problems in economics, engineering, social sciences, medical
sciences, etc. involve data containing uncertainties. These uncertainties can-
not be handled using traditional mathematical tools. Very often mathematical
tools from probability theory, fuzzy set theory (Zadeh, 1965), rough set theory
(Pawlak, 1982), intuitionistic fuzzy sets (Atanassov, 1986) and interval mathe-
matics (Gorza lczany, 1987) are useful in describing uncertainty. As pointed out
by Molodtsov (Molodtsov, 1999) each of these theories has its inherent difficul-
ties. Consequently, he initiated the concept of soft set theory as a mathematical
tool, free of the problems affecting the existing methods. In the paper referred
to, Molodtsov successfully applied soft set theory in several directions, such as
smoothness of functions, operations research, Riemann integration, game the-
ory, theory of probability and so on. Maji, Biswas and Roy (2003) defined
several basic notions of soft set theory and presented an application of soft set
theory in combination with rough sets in a decision making problem. After the
work of Molodtsov some different applications of soft set theory were studied
(see, for example, Chen, Tsang, Yeung and Wang, 2005; Maji and Roy, 2002;
Xiao, Li, Zhong and Yang, 2003). Other authors investigated the theory of soft
sets. Thus, e.g., Feng et al. (2008) initiated the study of soft semirings, Sun et
al. (2008) the study of soft module theory. Kong et al. (2008) defined a normal
parameter reduction of soft set and proposed a heuristic algorithm for normal
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parameter reduction. Shabir and Naz (2011) introduced topological spaces and
discussed some basic properties of such spaces.

Molodtsov defined the soft set as a pair (F , E), where F is a mapping
from E into the power set P (U) and E is a set of parameters. This means
that soft set is a parameterized family of subsets of the universe U . We can
study relations between soft sets and fuzzy sets, topological space and rough
sets. A fuzzy set is defined by its membership function whose values belong
to the closed interval [0, 1]. So, the family of α-level sets for the membership
function may be considered as a soft set (see Molodtsov, 1999). In the same
paper Molodtsov shows that the family of open neighbourhoods T (x) of a point
x, where T (x) = {V ∈ τ : x ∈ V } and (X ,τ) is topology, may be considered as
a soft set. In 1982 Pawlak introduced rough set theory using equivalence classes
to approximate crisp sets. This theory has been applied to many fields, such as
machine learning, data mining, data analysis, medicine and expert systems (see,
for example, Pawlak, 1981; Pawlak and Skowron, 1994; Skowron and Stepaniuk,
1996; Walczak and Massart, 1999). Aktas and Cağman (2007) presented a
comparison of soft sets with rough sets. They proved that every rough set may
be considered as a soft set. They considered a rough set R(x) of X in the
universe U , with respect to the equivalence relation R. The rough set of X

is defined by an R-upper approximation R∗(X), and R-lower approximation
R∗(X), and the equivalence relation R. Next, they considered the predicates
p1 (x), which stands for “[x]R ⊆ X”, and p2 (x), which stands “[x]R ∩X 6= ∅”.
The conditions p1 (x) and p2 (x) may be treated as elements of a parameter set;
that is E = {p1 (x) , p2 (x)}. Then we can write the function F : E → P (U),
F (pi (x)) = {x ∈ U : pi (x) is true}, i = 1, 2. Thus, every rough set R (X) of
X may also be considered as a soft set.

The main purpose of this paper is to introduce soft set mappings. Set val-
ued mappings (multifunctions) have many diverse and interesting applications
in control problems and theory of contingent equations, in mathematical eco-
nomics and in various branches of analysis. In the models of economic dynamics,
theory of multifunctions plays the central role. Mutifunctions were interpreted
as certain technological transformations assigning a set of commodities to a set
of production factors. It is assumed that the producer follows a precise be-
haviour pattern, by this we mean that the producer has complete information
concerning the condition of this productive activity and has perfect command
over both the set of inputs and the set of outputs. He realizes the maximum
profit allowed by the technological constraint, which limits possible actions and
by the given price system. In practice, the result of a production process is by
its nature imprecise. It follows that a technically possible production is more or
less efficient. The above mentioned situation is difficult to describe but a soft
set mapping seems to be a very useful tool in this respect.

This paper is organized as follows. Section 2 presents basic definitions of
soft sets. In Section 3, we propose a definition of soft set mapping and present
some basic properties of soft set mappings necessary for further considerations
on economic systems.
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2. Preliminaries and basic definitions

Let U be an initial universe set and let E be a set of parameters. Let P (U)
denote the power set of U .

Definition 2.1. (Molodtsov, 1999). A pair (F, E) is called a soft set (over
U) if and only if F is a mapping from E into P (U).

In other words, a soft set is a parameterized family of subsets of the universe
U . For e ∈ E, F (e) may be considered as the set of e−approximate elements of
the soft set (F, E).

Definition 2.2. For two soft sets (F, E1) and (G, E2) over a common
universe U , we say that (F, E1) is a soft subset of (G, E2) if

(i) E1 ⊆ E2 and

(ii) for any e ∈ E1, F (e) ⊆ G(e).

We write (F, E1)⊂̃(G, E2).

Definition 2.3. Two soft sets (F, E1) and (G, E2) over a common universe
U are said to be soft equal if (F, E1)⊂̃(G, E2) and (G, E2)⊂̃(F, E1).

We write (F, E1)=̃(G, E2).
Definition 2.4. (Maji, Biswas, Roy, 2003). The union of two soft sets

(F, E1) and (G, E2)over the common universe U is the soft set (H, E), where
E = E1 ∪ E2 and for any e ∈ E

H(e) =







F (e)
G(e)
F (e) ∪G(e)

if e ∈ E1 − E2

if e ∈ E2 − E1

if e ∈ E1 ∩E2.

We write (F, E1)∪̃(G, E2) = (H, E).

Definition 2.5. (Pei, Miao, 2005). The intersection of two soft sets (F, E1)
and (G, E2) over a common universe U is the soft set (H, E), where E =
E1 ∩ E2, and for any e ∈ E, H(e) = F (e) ∩G(e).

We write (F, E1)∩̃(G, E2) = (H, E).

If for any e ∈ E, F (e) = {x(e)} then such a soft set will be denoted (x, E)
and called soft point.

We say that a soft point (x, E) belongs to the soft set (F, E) if for any
e ∈ E, x(e) ∈ F (e). We write (x, E)∈̃(F, E).

Now, assume that U is a linear space with scalar multiplication by real
numbers.

Definition 2.6. The sum of two soft sets (F, E1) and (G, E2) over the
common universe U is the soft set (H, E), where E = E1 ∩ E2 for all e ∈ E,
H(e) = F (e) + G(e).

We write (H, E)=̃(F,E1 )+̃(G, E2).

Definition 2.7. For any soft set (F, E) and any real number λ we define
a multiplication λ̃·(F, E) as the soft set (H, E) such that for any e ∈ E,
H(e) = λ · F (e).

Definition 2.8. A soft set (F, E) is called convex iff for any e ∈ E, F (e)
is a convex set.
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3. Soft set mappings

Let Ui(i = 1, 2, 3) denote arbitrary, but for further considerations fixed ref-
erence spaces and let Ei denote the sets of parameters and P (Ei) the family
of subsets of Ei. Let Ti be the collection of soft sets over Ui with the set of
parameters from P (Ei).

Definition 3.1. A soft set mapping, say a : U1 × E1 → T2, is a mapping
from U1 × E1 to T2.

This means that for any (x, e1) ∈ U1 ×E1, a ((x, e1)) is a soft set from T2.
For any soft point (x, E1)∈̃(F1, E1) ∈ T1 we put

a ((x, E1)) =

∼
⋂

e1∈E1

a ((x(e1), e1))

and

a ((F1, E1)) =
∼
⋃

(x, E1)∈̃(F1, E1)

a ((x, E1)).

From the above definition it follows that: if for any e ∈ E1 G1(e) ⊆ F1(e) then
a ((G1, E1)) ⊂̃a ((F1, E1)).

Definition 3.2. The graph of a soft set mapping a : U1 ×E1 → T2 is the
set

Wa = {((x, e1), (y, e2)) : e1 ∈ E1, e2 ∈ E
′

2 ∈ P (E2) y ∈ F (e2), a ((x, e1))

= (F, E
′

2)
}

.

Let W e1, e2
a = {(x, y) : ((x, e1), (y, e2)) ∈ Wa} . Because a((x, e1) = (F, E2)

is the soft set, which we can interpret as a parameterized family of subsets of
the universe U2, so we will write that F (e2) ∈ a ((x, e1)). This notification
indeed simplify the notations in the proofs of the next theorems. Now, let us
assume that U1, U2 and U3 denote linear spaces with scalar multiplication by
real numbers.

Definition 3.3. A soft set mapping, a : U1×E1 → T2 say, is called conical
iff for any (x, e1) ∈ U1 × E1 and for any α > 0, a ((αx, e1)) =̃α̃·a ((x, e1)).

Theorem 3.1. If a : U1 ×E1 → T2 is a conical soft set mapping then for

any e1 ∈ E1 and e2 ∈ E2 the set W e1, e2
a is a cone.

Proof. Let (x, y) ∈ W e1, e2
a and α > 0. This means that y ∈ F (e2) ∈

a ((x, e1)). Then α y ∈ αF (e2) ∈ α̃·a ((x, e1)). Because a is a conical soft set
mapping, for any α > 0 we have αy ∈ αF (e2) ∈ a ((αx, e1)). This means that
((αx, e1), (α y, e2) ∈ Wa and finally (αx, α y) ∈ W e1, e2

a .
Definition 3.4. A soft set mapping, a : U1 × E1 → T2 say, is called

superadditive iff for any (x1, e1), (x2, e1) ∈ U1 × E1

a ((x1 + x2, e1)) ⊃̃a ((x1, e1)) +̃a ((x2, e1)) .
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Theorem 3.2. If a is conical and superadditive soft set mapping then for any

e1 ∈ E1 and e2 ∈ E2 the set W e1, e2
a is convex.

Proof. Let (x1, y1), (x2, y2) ∈ W e1, e2
a . This means that y1 ∈ F (e2) ∈

a ((x1, e1)) and y2 ∈ G(e2) ∈ a ((x2, e1)). A soft set mapping a is conical and
superadditive so for any α, β > 0, α + β = 1 we have

αy1 + β y2 ∈ αF (e2) + β G(e2) ∈ α̃·a ((x1, e1)) +̃β ·̃a ((x2, e1)) =̃

=̃a ((αx1, e1)) +̃a ((β x2, e1)) ⊂̃a ((αx1 + β x2, e1)) .

This means that (αx1 +β x2, α y1 +β y2) ∈ W e1, e2
a , i.e. a set W e1, e2

a is convex.
Theorem 3.3. If a is conical and superadditive soft set mapping then for

any (x, e1) ∈ U1 × E1 a ((x, e1)) is convex soft set.
Proof. Let a ((x, e1)) = (F, E

′

2)and let e2 ∈ E
′

2 and y1, y2 ∈ F (e2) ∈
a ((x, e1)).

This means that for any α, β > 0, α + β = 1 αy1 ∈ αF (e2) ∈ α̃·a ((x, e1))
and β y2 ∈ β · F (e2) ∈ β ·̃a ((x, e1)). Because a soft set mapping is conical and
superadditive so we have

αy1 + β y2 ∈ αF (e2) + β F (e2) ∈ α̃·a ((x, e1)) +̃β ·̃a ((x, e1)) =̃

=̃a ((αx, e1)) +̃a ((β x, e1)) ⊂̃a ((x, e1)) .

This means that if α̃·a ((x, e1)) +̃β ·̃a ((x, e1)) ⊂̃a ((x, e1)) then αF (e2)+β F (e2)
⊂ F (e2) and αy1 + β y2 ∈ F (e2), i.e.F (e2) is a convex set.

Definition 3.5. A composite, b ◦ a : U1 × E1 → T3 say, of two soft set
mappings a : U1 ×E1 → T2 and b : U2 ×E2 → T3 is a soft set mapping such
that for any (x, e1) ∈ U1 × E1 (b ◦ a) ((x, e1)) =̃b (a ((x, e1))).

Theorem 3.4. If a and b are conical soft set mappings then b ◦ a is a

conical soft set mapping too.
Proof. Let (x, e1) ∈ U1 × E1 and λ > 0. So, taking into account Definition

3.3 and Definition 3.5 we have

(b ◦ a) ((λx, e1)) =̃b (a ((λx, e1))) =̃b (λ̃·a ((x, e1))) =̃

=̃

∼
⋃

λ̃·(y, E2)∈̃λ̃·a((x, e1))

b (λ̃·(y, E2))=̃

∼
⋃

(y, E2)∈̃a((x, e1))

∼
⋂

e2∈E2

b ((λ · y(e2), e2))

=̃

∼
⋃

(y, E2)∈̃a((x, e1))

∼
⋂

e2∈E2

λ̃·b ((y(e2), e2)) =̃λ̃·(b ◦ a) ((x, e1)) .

This means that b ◦ a is a conical soft set mapping.
Theorem 3.5. If a and b are superadditive soft set mappings then b ◦ a is

a superadditive soft set mapping too.
Proof. Let (x1, e1), (x2, e1) ∈ U1 ×E1. Taking into account Definition 3.4

and Definition 3.5 we have

(b ◦ a) ((x1 + x2, e1)) =̃b (a ((x1 + x2, e1))) ⊃̃b
(

a ((x1, e1)) +̃a ((x2, e1))
)

=̃
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=̃

∼
⋃

(y1, E2)+̃(y2, E2) :
(y1, E2)∈̃a ((x1, e1))
(y2, E2)∈̃a ((x2, e1))

b
(

(y1, E2)+̃(y2, E2)
)

=̃

=̃
∼
⋃

(y1, E2)+̃(y2, E2) :
(y1, E2)∈̃a ((x1, e1))
(y2, E2)∈̃a ((x2, e1))

∼
⋂

e2∈E2

b ((y1(e2) + y2(e2), e2))⊃̃

⊃̃
∼
⋃

(y1, E2)+̃(y2, E2) :
(y1, E2)∈̃a ((x1, e1))
(y2, E2)∈̃a ((x2, e1))

∼
⋂

e2∈E2

(

b ((y1(e2), e2)) +̃b ((y2(e2), e2))
)

⊃̃

⊃̃
∼
⋃

(y1, E2)∈̃a((x1, e1))

∼
⋂

e2∈E2

b ((y1(e2), e2)) +̃

+̃
∼
⋃

(y2, E2)∈̃a((x2, e1))

∼
⋂

e2∈E2

b ((y2(e2), e2)) =̃

=̃(b ◦ a) ((x1, e1)) +̃(b ◦ a) ((x2, e1)) .

This means that b ◦ a is a superadditive soft set mapping.
Definition 3.6. A converse soft set mapping to a soft set mapping a :

U1 × E1 → T2 is a mapping a−1 : U2 × E2 → T1 such that for (y, e2) ∈
U2 × E2 a−1 ((y, E2)) = (F, E

′

1) iff for any e1 ∈ E
′

1 ∈ P (E1), F (e1) =
{x ∈ U1 : y ∈ G(e2) ∈ a (x, e1)}.

From the above definition it follows that ((y, e2), (x, e1)) ∈ Wa−1 iff
((x, e1), (y, e2)) ∈ Wa.

Theorem 3.6. If a soft set mapping is conical, then its converse soft set

mapping is conical too.
Proof. As a matter of fact, let a be a conical soft set mapping. So, taking

into account Definition 3.6 we have:
a−1 ((λy, e2)) = (F ′, E

′

1) iff for any e1 ∈ E
′

1 ∈ P (E1),
F ′(e1) = {x′ ∈ U1 : λy ∈ G′(e2) ∈ a ((x′, e1))} .

Moreover
λ̃·a−1 ((y, e2)) = λ̃·(F, E

′

1) iff for any e1 ∈ E
′

1 ∈ P (E1),

λF (e1) = λ · {x : y ∈ G(e2) ∈ a ((x, e1))} =

= {λx : y ∈ G(e2) ∈ a ((x, e1))} =

= {λx : λy ∈ λG(e2) ∈ λ̃·a ((x, e1))} =



Soft set mappings and their properties 601

= {λx : λy ∈ λG(e2) ∈ a ((λx, e1))} =

= {x′ : λy ∈ λG(e2) ∈ a ((x′, e1))} =

= {x′ : λy ∈ G′(e2) ∈ a ((x′, e1))} .

This means that a soft set mapping a−1 is conical.
Theorem 3.7. If a soft set mapping is superadditive then its converse soft

set mapping is superadditive as well.
Proof. In point of fact, let a soft set mapping a : U1 ×E1 → T2 say, satisfy

the assumption of the theorem. Let (y1, e2), (y2, e2) ∈ U2 × E2. Then from
Definition 3.6 it follows that:

• a−1 ((y1, e2)) = (F1, E
′

1) iff for any e1 ∈ E
′

1 ∈ P (E1)

F1(e1) = {x1 : y1 ∈ G1(e2) ∈ a ((x1, e1))} ;

• a−1 ((y2, e2)) = (F2, E
”
1 ) iff for any e1 ∈ E”

1 ∈ P (E1)

F2(e1) = {x2 : y2 ∈ G2(e2) ∈ a ((x2, e1))} ;

• a−1 ((y1 + y2, e2)) = (F3, E
′”
1 ) iff for any e1 ∈ E

′”
1 ∈ P (E1)

F3(e1) = {x3 : y1 + y2 ∈ G3(e2) ∈ a ((x3, e1))} .

We have to prove that for any

e1 ∈ E
′

1 ∩ E”
1 , F1(e1) + F2(e1) ⊂ F3(e1).

F1(e1) + F2(e1) =

= {x1 + x2 : y1 ∈ G1(e2) ∈ a ((x1, e1)) ; y2 ∈ G2(e2) ∈ a ((x2, e1))} =

=
{

x1 + x2 : y1 + y2 ∈ G1(e2) + G2(e2) ∈ a ((x1, e1)) +̃a ((x2, e1))
}

⊆

⊆ {x1 + x2 : y1 + y2 ∈ G3(e2) ∈ a ((x1 + x2, e1))} ⊆

⊆ {x3 : y1 + y2 ∈ G3(e2) ∈ a ((x3, e1))} .

So, a−1 is a superadditive soft set mapping.
Now, let us that U1, U2 and U3 are finite dimensional Euclidean spaces.
Definition 3.7. A soft set mapping, a : U1 ×E1 → T2 say, is called closed

iff for any e1 ∈ E1 and e2 ∈ E2 W e1, e2
a is a closed set.

Corollary. For any closed soft set mapping its converse soft set mapping is

closed.
Theorem 3.8. If a : U1 × E1 → T2 be a closed soft mapping and ξ

compact subset of U1. Then for any e1 ∈ E1 and e2 ∈ E
′

2 ∈ P (E2) the set

G(e2) ∈ a ((ξ, e1)) is closed, where a ((ξ, e1)) = (G, E
′

2) and a ((ξ, e1)) =
∼
⋃

x∈ξ

a ((x, e1)).

Proof. Let yn ∈ G(e2) ∈ a ((ξ, e1)), yn → y, xn ∈ ξ and yn ∈ Gn(e2) ∈
a ((xn, e1)) where a ((xn, e1)) = (Gn, En

2 ). Without losing generality we may
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assume that xn → x as n → ∞. Because a is a closed soft set mapping we ob-
serve that (x, y) = W e1, e2

a what means that y ∈ Ḡ(e2) ∈ a ((x, e1)) ⊂̃a ((ξ, e1)),
where a ((x, e1)) = (Ḡ, Ē). From the definition of union of soft sets it follows
that Ḡ(e2) ⊆ G(e2), what means that G(e2)is a closed set.

Corollary. If a : U1 × E1 → T2 is a closed soft set mapping then for any

e1 ∈ E1, e2 ∈ E2 and x ∈ U1 the set G(e2) ∈ a ((x, e1)) is closed.
A soft set (F, E) we will called bounded if for any e ∈ E, F (e) is bounded set.

Definition 3.8. A soft set mapping, a : U1 × E1 → T2 say, is called
bounded iff for any (x, e1) ∈ U1 × E1, a ((x, e1)) is a bounded soft set.

Theorem 3.9. Let a : U1 × E1 → T2 be a closed and bounded soft set

mapping and f a function continuous on U2. Then for any e1 ∈ E1 and e2 ∈ E2

the function

uf(x) = max
y∈G(e2)∈a((x, e1))

f(y), x ∈ U1

is upper semicontinuous.
Proof. Since a is closed and bounded soft set mapping, so for any (x, e1) ∈

U1 × E1 and any e2 ∈ E2 G(e2) ∈ a ((x, e1)) is compact set and f achieves
its maximum on this set. Now, let (xn) be an arbitrary sequence converging
to x and yn ∈ Gn(e2) ∈ a ((xn, e1)) such that f(yn) = uf(xn). Because a
is bounded soft set mapping, we can choose a convergent subsequence (ynk

).
Let lim ynk

= y. Then y ∈ G(e2) ∈ a ((x, e1)) since a is closed set mapping.
Therefore

limuf(xnk
) = f(y) 6 max

y∈G(e2)∈a((x, e1))
f(y) = uf (x)

and finally limuf (xn) 6 uf(x).
Theorem 3.10. Let

• U1 be a compact and convex subset of finite dimensional Euclidean space,
• a : U1×E1 → T1 be a closed, conical and superadditive soft set mapping,
• there exist e′, e′′ ∈ E1 such that for any x ∈ U1 the set F (e′′) ∈ a ((x, e′))
is nonempty.

Then there exists x̄ ∈ U1 such that x̄ ∈ F (e′′) ∈ a ((x̄, e′)).
Proof. Let us note that our soft set mapping generate a multifunction be′′ :

U1 → P (U1) such that for any x ∈ U1, be′′(x) = F (e′′) ∈ a ((x, e′)). Since a
is closed, conical and superadditive soft set mapping so from the Theorem 3.3
and Theorem 3.8 it follows that for any x, be′′(x) is convex and closed set. This
means that for the multifunction be′′ the assumptions of Fixed-point theorem
are fulfilled. So, there exists x̄ ∈ U1 such that x̄ ∈ be′′(x̄) = F (e′′) ∈ a ((x̄, e′)).

4. Conclusions

Multifunctions (set-valued mappings) have many diverse and interesting appli-
cations in control problems and theory of contingent equations, in mathematical
economics, and in various branches of analysis. Multifunctions are interpreted,
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for example as certain technological transformations assigning a set of commodi-
ties to a set of production factors. In practice, the result of a production process
is by its very nature imprecise. Such a situation is difficult to describe but a
soft set mapping seems to be a very useful tool in this respect.
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