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Abstract: Urban medium voltage (MV) electric power distri-
bution networks are supplied with primary (HV/MV) substations.
These networks supply secondary (MV/LV) transformer substations
and are often built as closed structures - loop arrangements. The
design problem of optimal urban MV distribution network structure
consists of determining the number of primary substations, estab-
lishing the number of MV loops supplied with the primary substa-
tions, and assigning the secondary MV/LV transformer substations
to the MV loops. The optimization task becomes especially com-
plex when the number of the primary substations is greater than
one. The minimum of total annual costs is sought. The total an-
nual costs include: fixed (investment) costs, variable (operating)
costs and supply-interruption costs. Typical constraints are also ac-
counted for. The so defined optimization problem is a complicated
mathematical problem in respect of computational effort. In order
to resolve the mathematical model of the optimization problem, evo-
lutionary algorithms and artificial neural networks have been used.
Exemplary computational experiments have been executed on the
model of urban MV multi-loop electric power distribution networks.
The results from the evolutionary algorithm and the artificial neural
network calculations have been compared.
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1. Introduction

Design of the optimal structure of Medium Voltage (MV) multi-loop electric
power networks, typical for urban areas, where there are more than one sup-
plying points (HV/MV primary substations, the so called Main Feeding Points
(MFP)) is a complex problem, requiring the use of optimization algorithms.

Optimization is meant to find the proper number of supply points (HV/MV
primary substations) and of MV loops, and to assign electric energy receiving
points (MV/LV distribution substations) to the MV loops and supply points.
This task is similar to the Multi Depot Vehicle Routing Problem (MDVRP).
The MDVRP is a generalization of the Vehicle Routing Problem (VRP), where
loops and supplying points have to be designed in such a way that their capacity
is not exceeded. The MDVRP is a very complicated mathematical problem in
terms of calculation effort (so called NP problem).

The classical approach to the design of multi-loop network structure consists
in determining a set of loops with minimal total annual costs. MV open-loop
distribution network planning problem has been described in Glamocanin and
Filipovic (1993) and Levitin et al. (1995). Glamocanin and Filipovic (1993)
presented an heuristic algorithm, which solves the problem of minimum sum of
loop lengths. In turn, multi-criteria approach (based on a genetic algorithm) for
distribution network structure optimisation has been presented in Levitin et al.
(1995). Minimum sum of loop lengths, minimum power losses and minimum
load imbalance between transformers have been taken into account. In both
papers MV loops begin and end in different, strictly determined substations.

Approach based on artificial intelligence methods was also used in optimiza-
tion problems with one supplying point (Brożek, 1999, 2004; Parol, 2003). In
Brożek (1999 and 2004) the approach with artificial neural networks and a sin-
gle criterion has been described. Use of evolutionary algorithms, fuzzy numbers
and multi-criteria optimization was presented in Parol (2003).

Different aspects concerning MV and LV distribution network planning have
been presented in many papers in recent years (Ramirez-Rosado et al., 2006;
Mendoza et al., 2006; Nahman and Peric, 2008; Navarro and Rudnick, 2009A,B;
Najafi et al., 2009; Lavorato et al., 2010; Wang et al., 2011). These papers
concerned mainly distribution systems operating as tree-based radial networks.

A new tabu search algorithm to solve a multiobjective fuzzy model for op-
timal planning of distribution systems has been presented in Ramirez-Rosado
et al. (2006). The algorithm allows to obtain multiobjective non-dominated
solution for three objective functions.

Application of two optimization techniques: the non-dominated sorting ge-
netic algorithm and the strength Pareto evolutionary algorithm, to the mul-
tiobjective design of power distribution systems has been shown, in turn, in
Mendoza et al. (2006). The algorithms have been used to minimize the total
annual cost and simultaneously to maximize the reliability of the distribution
systems.

Optimal planning of radial distribution systems by means of combination
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of two methods: steepest descent and simulated annealing, has been presented
in Nahman and Peric (2008). The aim was to find the routes ensuring the
minimum total annual cost.

Navarro and Rudnick (2009A,B) described planning methods for large low
voltage distribution systems, showing combined optimization of transformers
and networks associated with them. Voronoi diagram and tabu search were
used in optimization.

Application of genetic algorithms for optimal planning of large distribution
systems was considered in Najafi et al. (2009). The aim was to obtain optimal
sizes and locations of HV and MV substations, as well as MV feeder routes.
Fixed and variable costs were taken into account in the problem.

In Lavorato et al. (2010) distribution system planning with the use of a
constructive heuristic algorithm has been described. Tree-based distribution
networks supplied by one or greater number of substations have been analyzed.

A new balanced genetic algorithm and modified data envelopment analysis
to solve multistage distribution system expansion planning problems considering
future uncertainties have been presented in Wang et al. (2011). The multistage
expansion of tree-based distribution network structure was considered.

When we take into account all annual costs components, the approach based
on MDVRP usually cannot be used for problems of realistic sizes with multi-
supply points. In these types of problems with large number of power receiving
points it is worth using heuristic methods. Utilization of artificial neural net-
works to such a problem was presented in Brożek (2003).

2. Problem formulation

Multi-loop network structure design problem consists in determining a set of
supply points and a set of loops with minimal total annual costs. Loops be-
gin and end at one selected supplying point. The general aim of multi-loop
network construction is to supply a set of receiving points with a fixed power
(electric energy) demand and a fixed location, with assumption that each re-
ceiving point should be supplied from one and only one loop. The total annual
costs include fixed (investment) costs, variable (operating) costs and supply-
interruption costs:

Ctot =

m
∑

k=1







nk+1
∑

j=1

(Cf,j + Cv,j) +

nk
∑

i=1

Cur,ik+







+

z
∑

l=1

(Cf,l + Cv,l) (1)

where: Cf,j ; Cv,j – fixed and variable costs of j–th network loop section,
Cur,ik− unreliability (supply-interruption) costs of i-th receiving point in k-th
network loop,
Cf,l; Cv,l− fixed and variable costs of l–th supply point (HV/MV substation),

m – number of loops in the designed network,
nk− number of receiving points in k-th network loop,
z – number of supply points.
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The fixed costs are directly independent of power flows in network loops
and substations. In turn, variable costs (power and electric energy loss costs)
depend on power flows in network elements. The supply-interruption costs are
a complex function of distribution network structure, reliability parameters of
network elements and undelivered energy in each receiving point.

The fixed costs are calculated from the commonly known equations (Kul-
czycki, 1990).

The variable costs in j-th network loop section can be calculated from the
following equation

Cv,j = ∆Pj (cP + cAτmax) (2)

where: ∆Pj – maximal power losses in j–th loop section,
cP − unit power cost in the network,
cA − unit electric energy cost,
τmax− time of maximal load loss duration.
The variable costs in l-th supply point (with one HV/MV transformer) can

be calculated from the following equation

Cv,l =

[

∆PFe,l + PkrT,l

(

Sl

SrT,l

)2
]

(cP + cAτmax) (3)

where: ∆PFe,l; PkrT,l – iron and rated copper losses in l-th transformer,
Sl − apparent power flow in l-th transformer,
SrT,l − rated apparent power of l-th transformer.
Usually two transformers are located in an MFP. Then, the apparent power

flow Sl in l-th supply point is divided among these transformers and the variable
costs of the substation are the sum of costs for particular transformers.

The supply-interruption costs can be defined as follows (Kulczycki, 1990):

Cur =

m
∑

k=1

nk
∑

i=1

PkiTp,kiq
kicur,ki (4)

qki = qkil qkir (5)

where: Pki; Tp,ki; q
ki – peak load, utilization time and relative supply-interruption

duration of i-th receiving point in k-th network loop,
cur,ki − unit unreliability costs regarding i-th receiving point in k-th net-

work loop, caused by random outages,
qkil ; qkir − unreliability factor of the part of k-th network loop from i-th

receiving point to the left (to supply point) or to the right, respectively.
In the here presented method assumption is made that line cross-sections in

the MV loops of designed network are fixed and are able to endure the expected
thermal short circuit flows.

Voltage level at the i-th point of service connection to the electric net-
work should remain, conform to the obligatory legal regulations, in the interval
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〈

U l
i , U

u
i

〉

, where U l
i is the lower feasible limit of voltage level, and Uu

i is the
upper feasible limit of voltage level at the i-th point of an electric network.

In order to design the optimal structure of MV multi-loop electric power
network it is necessary to assume that the maximal loads, which can appear
in the calendar year, are considered. Usually this takes place at the so called
autumn-winter peak. In the method proposed it is assumed that these loads
(apparent powers) are known and appear simultaneously at all receiving points.

The essential conditions, which the designed network must meet, are as
follows:

• there are z supplying points with known locations,
• there are n receiving points with known apparent power demand and
known location,

• there is a set of feasible line (loop) routes,
• the designed electric power network operates in open configuration,
• a set of technical constraints must be fulfilled in the designed network.

3. Mathematical model

Optimization of multi-loop electric power distribution network structure is a
complex all integer mathematical problem.

Mathematical model of the optimization problem is formulated as follows

(see Kulczycki, 1990): network S =
〈

N,B,Cf , Cv, Cur, P
′

〉

in the sense of

graph theory is given, where: N – set of electric power network nodes, B – set of
power network branches, Cf – set of fixed costs in loop sections and substations,
Cv – set of variable costs in loop sections and substations, Cur – set of supply-
interruption costs, P

′

– set of power demands at receiving points. Optimization
should divide the graph G = 〈N,B〉 of network S into m subgraphs Gp,k (k =
1, 2, ...,m). The set N contains two subsets: Nsp (supplying points) and Nrp

(receiving points). We have to define m subsets Nk to minimize total annual
costs in the electric power network. Each set Nk contains respective subset
Nrp,k and one and only one node from the set Nsp.

The choice of the optimal multi-loop network structure is defined as follows:
to find the optimal solution to the following problem:

minCtot =
m
∑

k=1

{

nk+1
∑

j=1

(

Cf,j

(

Gp.k, P
′

k

)

+ Cv,j

(

Gp,k, P
′

k

))

+
nk
∑

i=1

Cur,i

(

Gp.k, P
′

k

)

}

+

+
z
∑

l=1

(

Cf,l

(

G,P
′

)

+ Cv,l

(

G,P
′

))

(6)

subject to the following set of constraints:

(1) I Kirchhoff law must be fulfilled,

(2) II Kirchhoff law must be fulfilled,
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(3) Power flows in branches (loops and substations) do not exceed the capacity
of each designed branch,

Pj 6 ck, ∀j = 1, 2, ..., nk + 1; ∀k = 1, 2, ...,m (7)

Sl 6 cl, ∀l = 1, 2, ..., z (8)

(4) Voltage drops in selected subset of routes do not exceed feasible values
(limits),

nk+1
∑

j=1

bij∆Uj(Pj) 6 ∆Uf,i, ∀i = 1, 2, .., nr (9)

where: bij is the element of the route-branch incidence matrix,
∆Uj (Pj) − voltage drop in the j-th branch (loop section),
∆Uf,i − feasible voltage drop in the i-th route,

(5) Nodes from the subset Nsp are the only common nodes of all subsets Nk,

Nk1,l∩Nk2,l = Nsp,l, ∀k1, k2 = 1, 2, ...,m; k1 6= k2; l = 1, 2, ..., z (10)

(6) Each node from the set Nrp should be assigned to one of the created subsets
Nk,

∪Nrp,k = N\Nsp, k = 1, 2, ...,m (11)

Expressions (10) and (11) guarantee that each receiving point will be connected
to one and only one network loop.
(7) Each node from the set Nrp should be assigned to one and only one supply
point

Nk1,l∩Nk2,r = ∅, ∀k1, k2 = 1, 2, ...,m; k1 6= k2 ∀l, r = 1, 2, ..., z; l 6= r

(12)

(8) Each subset Nk should contain at least two nodes,

|Nk| > 2, ∀k = 1, 2, ...,m (13)

(9) Number of incidence branches with receiving nodes is two,

nk+1
∑

j=1

|aij | = 2, ∀i = 1, 2, ..., nk (14)

(10) Number of incidence branches with supplying point is at least two,

∑

j∈J0

|aij | > 2, ∀i = 1, 2, ..., n (15)
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Formulae (14) and (15) guarantee that the designed electric power network has
a loop structure, i.e. each receiving point is directly connected with only two
other receiving points.

In formulae (6)÷(15) the following notations are introduced:

ck− capacity of the k–th loop, which supplies power to receiving points,

cl− capacity of the l–th substation,

nk− number of power receiving points in k-th network loop,

nr− number of routes in the network, for which the voltage drop require-
ments must be fulfilled,

aij− an element of the node-branch incidence matrix,

J0− set of pointers of incidence branches (loop sections) with supplying
points.

A feasible solution of this optimization problem is constituted by each net-
work Si ⊂ S, satisfying constraints (1)÷(11). The aim of optimization is to
choose such feasible solution, which attains the best value of the objective func-
tion (6).

To calculate power flow Pj and a voltage drop ∆Uj in each section of a loop,
it is necessary to solve an additional problem. This additional problem is to
find a set of splitting places in the loops, because the designed network must
operate as open. We assume, for simplicity, that this problem will be solved
locally, i. e. optimization calculations will be executed separately for each loop.

4. Solution of the problem based on evolutionary tech-

nique

Working of the evolutionary (genetic) algorithms was presented in details in
many publications, e.g., in Michalewicz (1996) and Cheng et al. (1997). The
main idea consists in adaptation of some notions and phenomena, appearing in
natural genetics and biological evolution processes.

The evolutionary algorithm for designing an urban multi-loop electric power
network optimal structure is presented below. In construction of this algorithm
some concepts and solutions from Cheng et al. (1995, 1997) and Cheng and
Gen (1996) have been utilized.

In the further part of the paper main components of the designed evolution-
ary algorithm are presented.

4.1. Problem representation

Each individual (chromosome) consists of genes. In turn, each gene is an or-
dered triple (index numbers of power receiving point, network loop, and supply
point) corresponding to a power receiving point in the designed network. The
chromosome structure is given in Table 1.
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Table 1. Chromosome structure (the manner of coding)

gene 1 gene 2 ... gene n

data

receiving point rp1 receiving point rp2 ... receiving point rpn
loop lrp1 loop lrp2 ... loop lrpn

supply point sprp1 supply point sprp2 ... supply point sprpn

4.2. Population initialization

In the analysed problem, due to loop and supply point capacity constraints it is
not possible to use a simple random procedure to create the initial population.
Moreover, to create a promising initial population, power receiving points should
be connected to supply points located in their neighbourhood. For this purpose
a procedure of assigning receiving points to supply points was included. The
assignment made is only a kind of “suggestion” (introductory solution) for the
rest of population initialisation procedure.

procedure Initial Population;
begin

Assign receiving points to supply points
i := 0;
while (i 6 N) do

begin

Create random permutation of receiving points;
Assign receiving points to loops;
i := i+ 1;

end

end

A procedure dealing with loops, proposed in this paper, contains two steps:
to create random permutation of power receiving points and to assign receiving
points to power network loops.

Receiving Points Assign to Loops procedure is a sequential adding proce-
dure. Its task is to assign receiving points to respective loops and supply points.
When new receiving point is added to a current loop, it is necessary to check
whether permissible loop capacity is not exceeded. If this condition is fulfilled,
then receiving point is assigned to that current loop; otherwise the receiving
point is assigned to a new loop. During assignment of each receiving point the
capacity of the supply point is examined. If it is exceeded, assignment to a new
supply point follows. The described procedure is repeated until all receiving
points are assigned to loops. The formal description of this procedure looks as
follows:

procedure Receiving Points Assign to Loops;
begin {description of actions for each chromosome}
s := 1; {number of a successive supplying point}
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k := 1; {number of a successive loop}
i := 1; {number of a successive receiving point}
while (i 6 n) do

begin

Check permissible capacity of current supplying point;
if Supplying point capacity not exceeded then

begin

Check permissible capacity of current loop;

if Capacity not exceeded

then Add receiving point to current loop;
else

begin

k := k + 1;

Add receiving point to new loop;

end;
end

else

begin

s := s + 1;

k := k + 1;
Add receiving point to new loop connected to new

supplying point;

end;

i := i + 1;
end

end

4.3. Genetic operations

In the presented method two genetic operators, crossover and mutation, were
used. Crossover operator is based on the best insertion heuristics. The best
insertion algorithm is regarded as the best one among all approaches in problems
similar to here considered optimization.

The action of the specialized crossover operator can be presented in the
following way (Cheng et al., 1995, 1997, and Cheng and Gen, 1996):

Step 1. Choose randomly as initial receiving point of chromosome offspring
either the rightmost receiving points of chromosome parents, which were earlier
selected for crossover operation.

Step 2. Exchange in the second (not selected) chromosome parent positions
of two receiving points in such a way that randomly selected receiving point is
in the last position in both chromosome parents.

Step 3. Remove the selected receiving point from both chromosome parents
to chromosome offspring and assign it to loop no. 1 and to the nearest supply
point (which now becomes the current one).
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Step 4. Two adjacent receiving points, with respect to selected previously
receiving point, become the candidates for insertion. Calculate the best insertion
place (position) on the partial tour of chromosome offspring for each of them
and select “the best” insertion receiving point.

Step 5. Insert “the best” receiving point into the current loop.
Step 6. If neither of the two candidates can be connected to the current

supply point, one of them is randomly inserted in the last current position of
chromosome offspring, to open a new loop connected to the nearest supply point
(which now becomes the current one) that can supply it.

Step 7. If neither of the two candidates can be inserted into the current
loop, one of them is randomly inserted in the last current position of chromo-
some offspring, to open a new loop.

Step 8. Repeat the above steps of calculating, comparing, exchanging, re-
moving and inserting until a complete chromosome offspring is created.

The best k–th receiving point for insertion between i–th and j–th receiving
points is determined by the following formula (Cheng et al., 1997):

c (i, k, j) = 1−
dij

dik + dkj
(16)

where: dij – distance between i–th and j–th receiving points.
Insertion measure function c (i, k, j) is a quasi normalized detour. The best

k–th receiving point for insertion is the one that minimizes this function.
Remarks:

1. A receiving point can be inserted between any two receiving points al-
ready assigned to the loop, also between supply point and the first (last)
receiving point in the loop.

2. Each time during the insertion it is necessary to check:

(a) is it possible to insert a given receiving point into the current loop in
view of its capacity?

(b) where is the best insertion place on the already existing tour (accord-
ing to the optimal insertion rule)?

The first problem oriented mutation operator acts as follows:
Step 1. Choose randomly a receiving point of a chromosome parent, which

was earlier selected for mutation operation.
Step 2. Find the beginning and the end of the loop to which the chosen

receiving point belongs.
Step 3. Search for the best insertion position of the chosen receiving point on

the tour from the beginning to the end of the defined loop. The best insertion
position is a place, which minimises the summarised length of the loop.

Step 4. Insert randomly chosen receiving point in the best insertion position.
Action of the second problem oriented mutation operator can be formulated

in the following way (see Fig. 1):
Step 1. Choose randomly a receiving point A of a chromosome parent, which

was earlier selected for the mutation operation.
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Step 2. Find the beginning and the end of the loop (the first and the last
receiving point in the loop) to which the chosen receiving point belongs.

Step 3. Find a receiving point B which is the closest one to the receiving
point A and does not belong to the loop where point A is located.

Step 4. Create set R of receiving points, located in those loops to which
points A and B belong.

Step 5. Find two receiving points C and D from the set R, which are the
most distant to each other and to the supply points of those loops.

Step 6. Determine which of points C and D is closer to which supply point.
Step 7. Start creating new loops by adding as first to these loops points C

and D, respectively.
Step 8. Add to loops successively the remaining receiving points which are

the closest to both the supply point and the previously added receiving point.
The primary aim of the second mutation operator is to split the loops, which

can cross each other. This results in shortening of the total length of all loops
(see Fig. 2).

Figure 1. Example of an action of the second mutation operator – initial state

4.4. Evaluation function

The fitness function for each individual in the population is calculated in the
following manner (Cheng et al., 1997):

eval (vk) =
g
(

v0
max

)

− g (vk)

g (v0
max)− g (v0

min)
(17)

g (vk) =
Ctot (vk)

C0
totmax

(18)

where: vk – k–th individual in current population,
Ctot (vk) − total annual network costs for individual vk,
C0

totmax − maximum total annual network costs among all individuals of
the initial population.
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Figure 2. Example of an action of the second mutation operator – final state

5. Solution of the problem based on artificial neural net-

works

There are n receiving points – MV/LV transformer substations (set Nrp) with
their locations given. These locations compose the vector XKoh of receiving
point coordinates. The components of this vector can be defined as: Xrp,i, Yrp,i,

i = 1, 2, ..., n. There are also z supplying points – HV/MV substations (set Nsp–
MFPs) together with their locations: Xsp,j , Ysp,j , j = 1, 2, ..., z.

To solve the presented optimization problem an unsupervised self-organizing
neural network using the WTM learning rule (the Winner Takes Most) was used.
The WTM (Anil et al., 1996; Hertz et al., 1991) is a modified WTA (the Winner
Takes All) algorithm. In the WTA algorithm in each iteration-step only one
neuron (i.e., the winning one) is adapted. In the WTM algorithm the winning
neuron and the neighboring neurons have their weights adapted. The longer
the distance between the winning and the neighboring neuron the smaller the
change of the neighboring neuron’s weight.

The algorithm has the following three stages (Brożek, 2004):

5.1. STAGE A

In STAGE A the input set Nrp is divided into z subsets N l
rp in such way that

⋃

N l
rp =Nrp, l = 1, 2, ..., z. The input set division is realized with the use

of a competitive neural network that is based on the WTM learning rule. In
order to calculate the neighborhood–function the neural–gas algorithm is used
(Martinetz et al., 1993). This stage of the algorithm is realized in the following
steps:

1. Normalize the input vector XKoh, initialize weights of neurons and set
the initial learning rate.

2. Present normalized vector XKoh and evaluate the network’s outputs.
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3. Calculate:
∥

∥XKoh − wk

∥

∥ 6
∥

∥XKoh − wi

∥

∥ ∀1 6 i 6 Ne (19)

where k is the best–match neuron, Ne is the number of neurons.
4. Rank the neurons according to their distance from the input vector:

∥

∥XKoh − wk0

∥

∥ 6
∥

∥XKoh − wk1

∥

∥ 6 ... 6
∥

∥XKoh − wkNe − 1
∥

∥ (20)

where:
wk0

− is the weight vector of the closest neuron to XKoh,

wk1
− is the weight vector of the second - closest neuron toXKoh,

wkj
− is the weight vector of the (j+1)-th closest neuron to XKoh,

wkNe−1− is the weight vector of the last neuron in the rank, and

1 6 j 6 Ne − 1.

5. Update all weights according to the learning rule:

wi (t+ 1) = wi (t) + η (t) Λ (j)
[

XKoh (t)− wi (t)
]

(21)

where η(t) is the learning rate, and Λ(j) is the neighbourhood function in
the tth iteration step.

6. Calculate the values of η(t) and Λ(j):

η(t) = ηmax(
ηmin

ηmax

)
t

itrr (22)

where ηmin and ηmax are the minimum and the maximum values of the
learning rate η, respectively, and itrr is the maximum number of iteration
steps in STAGE A of the algorithm;

Λ (j) = e
−

j

λ(t) (23)

λ(t) = λmax(
λmin

λmax

)
t

itrr (24)

is the decay constant. λmin and λmax stand for the minimum and the
maximum values of the decay constant, respectively.

7. Repeat steps 2 through 6 until t = itrr, where itrr is the given number of
iteration steps.

8. Define all subsets N l
rp.

The division of the set Nrp results in creation of separate sets N l
rp “concen-

trated” around their “geographical” centers.

5.2. STAGE B

In STAGE B the subsets N l
rp are divided into ml subsets N

l
rp,k such that

⋃

N l
rp,k = N l

rp, k = 1, 2, ...,ml, where ml is the given number of loops in the

set N l
rp. Every subset N l

rp is taught according to the principles described in
STAGE A. The process is repeated z times.
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5.3. STAGE C

During STAGE C the supply point (MFP) is added to each subsetN l
rp,k, yielding

mk learning sequences (N l
k). In each subset N l

k a Hamilton cycle (Hertz et al.,
1991) is defined with use of Kohonen’s SOM (Kohonen, 1995; and Osowski,
2006). In this stage the number of neurons in the Kohonen’s layer equals to
the size of the input vector multiplied by nn. The value of nn = 3 has been
established experimentally. The steps of this stage of the algorithm are the
following:

1. Creation of the subsetsN l
k = N l

rp,k∪N
l
sp,k, k = 1, 2, ...,ml (whereN

l
sp,k

is one-element set representing MFP for the set N l
rp). Coordinates of the

respective receiving and supply point locations form the vector Xkl

Koh
.

2. Normalize the input vector Xkl

Koh
, initialize weights of neurons, set the

initial learning rate and neighbourhood.

3. Present the normalized vector X
kl

Koh and evaluate the network’s outputs.
4. Select the winning neuron k according to the formula:

∥

∥

∥
X

kl

Koh
− wk

∥

∥

∥
= min

i

∥

∥

∥
X

kl

Koh
− wi

∥

∥

∥
(25)

5. Update all weights according to the learning rule:

wi (t+ 1) = wi (t) + η (t) Λ (k, i)
[

X
kl

Koh
(t)− wi (t)

]

(26)

where η(t) is the learning rate, and Λ(k, i) is the neighbourhood function
in the tth iteration step.

6. Decrease the value of η(t) according to the formula (22) substituting itrr

with itr, where itr is the maximum number of iteration steps in STAGE
C.

7. Calculate Λ(k, i)according to the formula:

Λ(k, i) = e
−

l(k,i)
λ(t) (27)

where l (k, i) is the distance (i.e., the number of neurons) between the
winning neuron k and the neuron i; and λ (t) is calculated according to
the formula (24) with the substitution itrr → itr.

8. Repeat steps 3 through 7 until t = itr.
9. Calculate the annual cost for the k-th loop Ctot,kl.

10. Repeat all steps for each N l
k, k = 1, 2, ...,ml.

11. Calculate the annual cost of network Ctot,l =
m
∑

k=1

Ctot,kl.

12. Repeat the calculations for every set N l
rp, l = 1, 2, ..., z.

13. Calculate the total annual cost of the network Ctot =
z
∑

l=1

Ctot,l.
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6. Calculation experiments

To test the effectiveness of the proposed evolutionary algorithm and the artifi-
cial neural network appropriate calculations were conducted. Two cases of the
problem with two and three supply points (MFPs) and 114 receiving points were
investigated. The rectangular coordinates of each receiving point are presented
in Table 2.

Remarks :

1. Active power for each receiving point is 300 kW and power factor is 0.8945.
2. Coordinates of the supplying points are as follows:

(a) case with two MFPs: x1 = 0.200; y1 = 1.400, x2 = 3.300; y2 = 1.400;

(b) case with three MFPs: x1 = 1.200; y1 = 0.350, x2 = 1.350; y2 =
2.250, x3 = 2.900; y3 = 1.400.

The distances between receiving points and between the supply and receiving
points are calculated from the equation:

dij = |xi − xj |+ |yi − yj | (28)

where: xi, yi ,xj , yj– coordinates of the i-th and of the j-th points, respectively.

Electric and economic parameters of the underground cable, used in the
analysis, are shown in Table 3. The electric and economic parameters of the
MFPs are given in Table 4.

Remark : PLN – Polish currency, 1PLN ≈ 0.3 EUR.

Values of other electrical and economic parameters were selected as follows:

• nominal voltage: 15 kV,
• unit power cost: 80.64 PLN/kW,
• unit energy cost: 0.05828 PLN/kWh,
• unit unreliability costs caused by random outages: 4.0796 PLN/kWh,
• utilization time of peak load: 4500 h/year,
• time of maximal load losses duration: 3000 h/year,
• fixed cost rate for cable line: 0.15,
• fixed cost rate for substation: 0.18.

As mentioned, two cases have been considered. In Case 1 there are two supply
points (MFPs) and in Case 2 - three MFPs. The optimal solutions obtained
for Case 1 using evolutionary algorithms and artificial neural network technique
are presented in Figs. 3 and 4, respectively. The optimal solutions obtained for
Case 2 are shown in Figs. 5 and 6.

In both here presented optimal solutions for Case 1 (Figs. 3 and 4) 114
receiving points (MV/LV substations) are assigned to 8 MV loops. Four MV
loops are supplied from MFP1 and other four MV loops from MFP2. Numbers
shown in Figs. 3 and 4 correspond to particular MV/LV substations placed in
each loop. Routes from one MV/LV substation to other one or from MFP to
MV/LV substation are conducted in rectangular arrangement.
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Table 2. Coordinates of receiving points in the test problem

No. X[km] Y[km] No. X[km] Y[km] No. X[km] Y[km]
1 0.300 0.0 39 0.900 0.900 77 3.000 1.800
2 0.600 0.0 40 1.200 0.900 78 3.300 1.800
3 0.900 0.0 41 1.500 0.900 79 3.600 1.800
4 1.200 0.0 42 1.800 0.900 80 0.300 2.100
5 1.500 0.0 43 2.100 0.900 81 0.600 2.100
6 1.800 0.0 44 2.400 0.900 82 0.900 2.100
7 2.100 0.0 45 2.700 0.900 83 1.200 2.100
8 2.400 0.0 46 3.000 0.900 84 1.500 2.100
9 2.700 0.0 47 3.300 0.900 85 1.800 2.100
10 3.000 0.0 48 3.600 0.900 86 2.100 2.100
11 3.300 0.0 49 0.900 1.200 87 2.400 2.100
12 3.600 0.0 50 1.200 1.200 88 2.700 2.100
13 0.000 0.300 51 1.500 1.200 89 3.000 2.100
14 0.300 0.300 52 1.800 1.200 90 3.300 2.100
15 0.600 0.300 53 2.100 1.200 91 3.600 2.100
16 0.900 0.300 54 2.400 1.200 92 0.300 2.400
17 1.200 0.300 55 2.700 1.200 93 0.600 2.400
18 1.500 0.300 56 3.000 1.200 94 0.900 2.400
19 1.800 0.300 57 3.300 1.200 95 1.200 2.400
20 2.100 0.300 58 3.600 1.200 96 1.500 2.400
21 2.400 0.300 59 0.900 1.500 97 1.800 2.400
22 2.700 0.300 60 1.200 1.500 98 2.100 2.400
23 3.000 0.300 61 1.500 1.500 99 2.400 2.400
24 3.300 0.300 62 1.800 1.500 100 2.700 2.400
25 3.600 0.300 63 2.100 1.500 101 3.000 2.400
26 0.300 0.600 64 2.400 1.500 102 3.300 2.400
27 0.600 0.600 65 2.700 1.500 103 3.600 2.400
28 0.900 0.600 66 3.000 1.500 104 0.300 2.700
29 1.200 0.600 67 3.300 1.500 105 0.600 2.700
30 1.500 0.600 68 3.600 1.500 106 0.900 2.700
31 1.800 0.600 69 0.600 1.800 107 1.200 2.700
32 2.100 0.600 70 0.900 1.800 108 1.500 2.700
33 2.400 0.600 71 1.200 1.800 109 1.800 2.700
34 2.700 0.600 72 1.500 1.800 110 2.100 2.700
35 3.000 0.600 73 1.800 1.800 111 2.400 2.700
36 3.300 0.600 74 2.100 1.800 112 2.700 2.700
37 3.600 0.600 75 2.400 1.800 113 3.000 2.700
38 0.300 0.900 76 2.700 1.800 114 3.300 2.700
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Table 3. Electric and economic parameters of the underground cable

Parameters of line Values

cross-section [mm2] 120
unit resistance [Ω/km] 0.253
unit reactance [Ω/km] 0.096
capacity [kW] 4996
unit investment cost [PLN/km] 190 000
unreliability factor [1/km] 0.0003

Table 4. Electric and economic parameters of the HV/MV substations – MFPs

Parameters of substation Two MFPs Three MFPs

apparent rated power [kVA] 2x16000 2x10000
capacity [kW] 19200 14000
investment cost of 110/MV transformer [PLN] 1.400.000 1.260.000
iron losses in transformer [kW] 16.5 11.0
rated copper losses in transformer [kW] 91.5 65.0
investment cost of MV bay [PLN] 112.500 112.500
investment cost of 110 kV switchgear [PLN] 3.360.000 3.360.000

Figure 3. Optimal solution for the test problem (Case 1) obtained with the use
of the evolutionary algorithm. Total annual costs of the designed network is
Ctot = 3 960 440 PLN



684 M. PAROL, D. BACZYŃSKI, J. BROŻEK

Figure 4. Optimal solution for the test problem (Case 1) obtained by means
of the artificial neural network. Total annual costs of the designed network is
Ctot = 3 980 027 PLN

Figure 5. Optimal solution for the test problem (Case 2) obtained with the use
of the evolutionary algorithm. Total annual costs of the designed network is
Ctot = 4 781 697 PLN
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Figure 6. Optimal solution for the test problem (Case 2) attained by means
of the artificial neural network. Total annual costs of the designed network is
Ctot = 5 001 548 PLN

In the optimal solution presented in Fig. 5 all receiving points are assigned
to 8 loops. Two MV loops are supplied from MFP1, three other MV loops from
MFP2, and yet other three MV loops from MFP3.

In turn, in the optimal solution shown in Fig. 6 the set of receiving points
is divided into ten loops. Three MV loops are supplied from MFP1, three MV
loops from MFP2, and four MV loops from MFP3.

Similarly as in Figs. 3 and 4, routes from one MV/LV substation to another
one or from MFP to MV/LV substation, shown in Figs. 5 and 6, are also
conducted in rectangular arrangement.

Results obtained by means of the evolutionary algorithm and the artificial
neural network for two considered cases are presented in Table 6, where mainly
the cost aspect is taken into account.

The settings of genetic parameters are given in Table.

Values of ANN parameters used in the test calculations are as follows:

• the number of iteration steps in STAGES A and B, itrr= 5 000;
• the number of iteration steps in STAGE C itr = 10 000;
• the minimum value of the learning rate ηmin = 0.005;
• the maximum value of the learning rate ηmax = 0.5;
• the minimum value of the decay constant λmin = 0.01;
• the maximum value of the decay constant λmax = 10.

As shown in Table 5, in both Case 1 and Case 2 the evolutionary algo-
rithm allowed for obtaining better solution of the optimization problem than
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Table 5. Comparison of operational effectiveness of the evolutionary algorithm
(EA) and artificial neural network (ANN)

Parameter name
Case 1 Case 2

EA ANN EA ANN

Number of loops 8 8 8 10
Total loops length, km 45.8 46.8 41.0 46.6
Investment (fixed) costs, PLN 3846900 3875400 4667700 4908500
Exploitation (variable) costs, PLN 86 437 88 925 86 594 80 769
Supply-interruption costs, PLN 27 102 18 511 27 403 12 477
Total annual costs, PLN 3960440 3980027 4781697 5001548

Table 6. Values of genetic parameters used in the test calculations

Genetic parameters Case 1 Case 2

Population size N 200 100
Maximum generation number 60000 30000
Crossover probability pc 0.7 0.4
Mutation probability pm 0.07 0.04
Elitist strategy on on
Linear scaling option on on
Generation with optimal solution 16947 18413
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the artificial neural network, i.e. total annual costs for it were lower. Simi-
larly, investment costs in both cases were lower, what is directly connected with
lower total loops length. In Case 1, when loop number is the same and equals
8, variable costs for the solution obtained by EA were lower than for the one
obtained with ANN. In turn, in Case 2, mainly because of greater number of
loops, variable costs for the solution obtained by ANN were lower than for the
one obtained with EA. In both considered cases supply-interruption costs for
solutions obtained by ANN are lower than for ones obtained by EA. As it has
been presented, fixed (investment) costs were the decisive factor for the total
annual costs in both analyzed cases.

7. Conclusions

A new approach for designing MV urban multi-loop electric power network
optimal structure has been presented. This approach has been based on min-
imization of total annual network costs. Investment costs, power and energy
loss costs and supply-interruption costs have been included in the total annual
network costs.

In order to solve the described optimization task, the problem oriented al-
gorithms have been built. First algorithm is based on evolutionary technique.
Special initial population procedure, crossover procedure and mutation proce-
dures have been designed to improve the effectiveness of the evolutionary algo-
rithm. Second algorithm is based on artificial neural network. The Kohonen’s
neural network has been built to attain this aim.

Computational experiments have been executed on the test problem. The
comparison between the effects of evolutionary algorithm action and the artifi-
cial neural network operation has been made for the test task. For two analyzed
cases both methods gave similar results. The obtained results show that both
evolutionary algorithm and artificial neural network can be useful tools for de-
signing MV urban multi-loop electric power network optimal structure.

Although both cases of the test problem are similar to the problems met in
practice (considering problem size) the proposed methods should be tested with
larger cases. This can show more clearly the drawbacks of these methods. Some
of the problems were already observed during testing of the method based on
the evolutionary algorithm. In authors’ opinion the part of the algorithm which
most needs changes is the crossover operator. Its deficiency in action results in
slowing of the optimization process. There are also other subproblems which
should be addressed when developing the evolutionary method.

It is planned to develop a hybrid algorithm for improving the results obtained
with the presented algorithm based on the Artificial Neural Networks. The
envisaged algorithm will take advantage of the Simulated Annealing method
and Genetic Algorithms. It is also planned to adopt the presented algorithm
for designing other types of electric power networks.
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