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Abstract: Markov decision processes (MDPs) provide a mathe-
matical model for sequential decision making (sMDP/dMDP: stochas-
tic/deterministic MDP). We introduce the concept of generalized
dMDP (g-dMDP) where each action may result in more than one
next (parallel or clone) state. The common tools to represent dMDPs
are digraphs, but these are inadequate for sMDPs and g-dMDPs. We
introduce d-graphs as general tools to represent all the above men-
tioned processes (stationary versions). We also present a combined
d-graph algorithm that implements dynamic programming strate-
gies to find optimal policies for the finite/infinite horizon versions of
these Markov processes. (The preliminary version of this paper was
presented at the Conference MACRo 2011.)
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1. Introduction

A Markov decision process (MDP) is a mathematical tool for modeling sequen-
tial decision making under uncertainty. MDP models have gained recognition
in numerous fields of science like optimal control, operations research, AI, eco-
nomics, game theory, computer sciences, telecommunications, etc.

The term of MDP is historically related to the notions of “Dynamic pro-
gramming” and “Markov chain”. The first book in dynamic programming (DP)
was published by Richard Bellman in 1957 (Bellman, 1957). The book presents
DP as a new numerical method for solving sequential decision problems. Three
year later, in 1960, Ronald Howard published the book entitled ”Dynamic Pro-
gramming and Markov Processes” (Howard, 1960). This work combines the dy-
namic programming technique with the mathematically well-established notion
of Markov chain. The term of MDP naturally resulted from this combination
(see Kristensen, 1996). During the past fifty years MDPs have become useful
tools for studying a wide range of optimization problems solved via dynamic
programming.
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A DP problem can usually be formulated either as an optimal structure
or an optimal control problem. By representing a DP problem as a graph we
move it to a well developed area: graph theory. The most common methods
use digraphs. This approach often leads to an optimal path problem. Since
the ordinary digraph representation is not always sufficient, Lew introduced
Bellman nets (specialized acyclic Petri nets) to model complex optimal structure
DP problems (see Lew, 2002). These problems may have optimal solutions
which are represented by K-ary trees (rather than paths). When motivating
their choice for Petri Nets, Lew and Mauch (2004; 2007) explain why – because
of the overlapping sub-problems – a tree or a parse-tree model would also be
inappropriate. The hierarchic d-graph model introduced by Katai (2006) also
solves both impediments mentioned by Lew and Mauch.

The DP problem solving process can be divided into two steps: (a) the
functional equation of the problem is established (a recursive formula that im-
plements the principle of optimality); (b) a computer program is elaborated that
processes the recursive formula, usually in a bottom-up / backward way. The
second step commonly means that specialized software is developed for every
problem in particular. To save software development costs, authors like Lew and
Katai proposed general software tools automatically solving optimal structure
discrete DP problems. The solver software DP2PN2Solver uses Bellman nets as
intermediate representation of the functional equation (Mauch, 2006; Lew and
Mauch, 2007). The software tool proposed by Katai and Csiki (2009) builds up
the d-graph representation of the problem.

The analysis presented by Kátai and Fülöp (2010) compares the two meth-
ods and software tools. The Bellman net model works only when the functional
equation is formulated in such a way that it does not contain “circular defi-
nitions” (see Lew and Mauch, 2007). Since the functional equation describes
the way the optimal solution of the current sub-problem may depend on the
optimal solution of other sub-problems we should not exclude “structurally cir-
cular definitions” (in Section 2 we present an example). Katai (2010) extended
the concept of d-graph to generalized d-graph that can handle DP problems
with “cyclic functional equations” too. This quality of d-graphs is also essential
when we use them to represent MDPs. Lew and Mauch (2007) mentioned the
possibility to extend their model to iterative problems associated with MDPs
among future research plans.

In this paper we extend the d-graph representation method to optimal con-
trol problems, more exactly to MDPs. We introduce the concept of generalized
deterministic MDP to extend the model to cases where each action may result
in more than one next (parallel or clone) state. We present a combined d-graph
algorithm that implements dynamic programming strategies to find optimal
policies for the finite/infinite horizon versions of the MDPs. We plan to develop
a software tool that automatically solves MDPs (the input being the functional
equation).
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2. Markov decision processes

An MDP includes a finite set of states (S), one of the states being identified as
the initial state of the system (s0 ∈ S). In each time unit or stage, the con-
troller of the MDP has to select an action from the subset of currently enabled
actions (A(s), s ∈ S). An MDP also includes an immediate cost (or reward)
and a probability distribution over the next state of the process associated with
each action (C(s, a) ∈ R,P (s, a) ∈[0,1], s ∈ S, a ∈ A(s)). In a finite/infinite
horizon MDPs, the controller has to guide the process for a finite/infinite num-
ber of steps. Our goal is to optimize the overall cost/reward associated with
the performed action-sequence. Whereas for the finite horizon version of the
problem the sum of immediate costs of the action-sequence is a proper overall
cost/reward function, for infinite horizon problems this function is often chosen
as the limit of the average cost/reward, or the total discounted cost/reward (see
Madani, Thorup and Zwick, 2009).

A policy (or strategy) for an MDP is a mapping that defines the action
the controller has to perform in each state (π : S → A). The decision con-
cerning the current action may depend on the current state of the process and
possibly on history. A policy is called positional if it is pure and history inde-
pendent (markovian deterministic policy), see Gimbert (2008). A policy that
minimizes/maximizes the overall cost/reward is called optimal (π∗). One of the
main results for MDPs is that an infinite horizon MDP always has exactly one
optimal positional policy which is optimal for every starting-state (Puterman,
1994). Solving an MDP means finding such an optimal policy and the optimal
overall cost for each starting-state (see Madani, Thorup and Zwick, 2009).

An MDP is said to be deterministic (dMDP) if each action uniquely defines
(with probability 1) the next state of the process. (For stochastic MDP we use
the acronym sMDP further on) We extend the definition of dMDP to generalized
dMDP (g-dMDP) where each action may result (with probability 1) in more
than one next state. We call these parallel states clone-states. To illustrate the
necessity of this extension we present the following optimal control problem.

2.1. An illustrating example

(1st version) A discrete bi-dimensional world can be characterized by a fi-
nite number of world states {(i, j) |i=1..N, j =1..M}. This world can in-
tuitively be imagined as a bi-dimensional array s(1..N,1..M). An agent en-
ters array s at cell (1,1) and leaves it at cell (N,M). At each time step
the agent has to select among given valid actions (for example, to move to
(N)orth/(E)ast/(S)outh/(W)est). Each action has an immediate cost: in each
cell that the agent entered a tax has to be paid (s(i, j) represents the tax at-
tached to cell (i, j)). We are interested in the optimal (minimal overall cost)
way of getting through the world. If we denote the optimal cost from cell (i, j)
to cell (N,M) with c(i, j) then the optimal overall cost will be represented by
the value c(1,1). This problem, in this original version, can properly be modeled
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by a dMDP. Fig. 1 shows a sample world where there are bidirectional doors
between all neighboring cells (see also Fig. 4).

In this case the most natural form of the functional equation is the following:

c (N,M) = s (N,M)

Otherwise:

c (i, j) = s (i, j) +min(c (i− 1, j) , c (i, j + 1) , c (i+ 1, j) , c (i, j − 1))

(assuming that the corresponding neighbor-cells exist).
Note, for example, that (on the basis of the structural dependences built-in

the above recursive formula) the value c(3,2) may depend on value c(3,3), and
conversely, value c(3,3) may depend on value c(3,2):

c (3, 2) = s (3, 2) +min(c (2, 2) , c (3, 3) , c (4, 3) , c (3, 1))

c (3, 3) = s (3, 3) +min(c (2, 3) , c (3, 4) , c (4, 3) , c (3, 2)).

At the end of the optimization process we have
c (3,3)= s (3,3)+c (3,2).

(Value c (3,3) depends on value c (3,2).)

1 2 3 4

1 1 1 1 1

2 9 9 9 1

3 1 1 1 1

4 1 9 9 9

5 1 1 1 1

Figure 1. Bi-dimensional world (N =5, M =4). Starting cell: (1,1). Goal cell:
(5,4). Between all neighbor cells there are bidirectional doors. The optimal
path from the starting cell to the goal cell is marked

(2nd version) Let us now consider a second version of the problem: The
agent may create (or clone) further copies (instances) of himself. Accordingly,
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an instance that entered a cell may go on from there to more than one direc-
tion in parallel (cloning as many further copies as necessary). We consider the
original instance that enters the world as being a 100% taxable agent (“100%
– instance”). If the current cell is entered by an “x% – instance” and left by
n instances (the entered one and his newly created clones), then the leaving
instances are considered “(x/n)% – instances”. An “x% – instance” has to pay
only x% of the tax attached to the cell it has entered. Since a cell may have
maximum of 4 “out-doors” there are maximum 24-1 possibilities for the entered
instance to go on. For each cell a hex-string codes the corresponding valid ac-
tions. Fig. 2 shows the 15 possibilities to go on from the current cell (see also
Fig. 7). We are interested in the optimal way the clone population can traverse
the world. The most appropriate model for this second version of the problem
is a g-dMDP.

WVN E N E S

The 15 possibilities to go on 

(coded as hex-digits)

N S E S SN E N E N E S NV V V V V V VS E S N E S

FEDCBA987654321

Out-door directions

WWWWWW W

Figure 2. The 24-1 variants (coded as hex-digits) to go on from a cell where all
possible actions are valid. The digits of the binary representation of 4 bits (from
the rightmost one to the leftmost one) of the hex-digits correspond to directions
N, E, S and W, respectively

(3rd version) In the followings we consider a third version of the problem that
can properly be modeled by an sMDP. The instance that entered the current cell
has first to choose among the valid actions to go on. Since the selected action
may imply that the current instance has to go on in parallel to more than
one direction (by the corresponding doors), it has to make a second decision
too: which door will be accessed by it personally (the other doors are randomly
distributed among the newly created clones). Given the probability distribution
regarding the second choice, determine – for the original agent personally – the
most favorable way of getting through our discrete world.

3. Graph representation of Markov decision processes

Stationary MDPs (the dynamics of the model does not depend on time) can be
represented as graphs. A dMDP can be conveniently represented as a weighted
digraph (see Madani, Thorup and Zwick, 2009). The vertices of the graph
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correspond to the states of the dMDP and the arcs correspond to the action.
The weight of an arc is the immediate cost of the corresponding action.

Since in the case of stochastic sMDPs and g-dMDPs each action may result
in several next stages, the digraph representation is not sufficient. As Lew and
Mauch (2007) state, an ordinary digraph cannot be used to represent complex
systems, such as those with parallel next-states. Two examples described by
them are: (1) The main characteristic of the so-called “optimal binary tree
problems” is that each decision leads to multiple next-states rather than a single
one; (2) Although in probabilistic problems each decision results in a single next-
state, these are determined by chance from a set of alternatives.

The common tool for modeling parallel and independent events in an illus-
trative manner is Petri nets. To model discrete optimization problems that are
solvable by DP, Lew (2002) introduced Bellman Nets, special high-level Petri
Nets with numerically-colored tokens. Mauch’s representation model for similar
purposes also relies on specialized Petri Nets that use the standard semantics of
place/transition nets, a low-level Petri Net class (see Mauch, 2006). Clempner
(2005) introduced the Colored Decision Process Petri Net modeling paradigm
that extends the Colored Petri Net theoretic approach including Markov deci-
sion processes. As we mentioned above, the Bellman net model cannot handle
”cyclic problems” properly, and it has not been extended to MDPs. On the
other hand, the Colored Decision Process Petri Net modeling paradigm does
not deal with g-dMDPs.

In order to represent a larger class of optimal structure DP problems Katai
(2006; 2010) extended the ordinary digraph model firstly to hierarchic d-graphs
and later to generalized d-graphs. In this paper we present the way the d-graph
representation method can naturally be extended to MDPs (sMDP, dMDP, g-
dMDP).

4. d–graph-representation of Markov decision processes

The concept of d-graph was introduced by Katai (2006; 2010).

Definition: The connected weighted bipartite finite digraph Gd (V, E) is a
d–graph if:

• V = Vp ∪ Vd and E = Ep ∪ Ed, where
• Vp is the set of p–vertices.
• Vd is the set of d–vertices.
• All in/out neighbours of the p–vertices (excepting the source/sink vertices)
are d–vertices. Each d–vertex has exactly one p–in-neighbour. Each d–
vertex has at least one p–out-neighbour.
• Ep is the set of p–arcs (from p–vertices to d–vertices).
• Ed is the set of d–arcs (from d–vertices to p–vertices).
• We also define functions Cp: Ep → R, and Cd: Ed → R.

If a d–graph is cycle-free, then its vertices can be arranged into levels (hi-
erarchic structure). Related to hierarchic d–graphs Katai (2006) defines the
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following concepts: d–sub-graph, d–tree, d–sub-tree, d–spanning-tree, optimal
d–spanning-tree and optimally weighted d–graph.

A Markov Decision Process (sMDP, dMDP, g-dMDP) can be seen as a d–
graph G = (Vp ∪ Vd, Ep ∪ Ed), where Vpis a set of states (p-sources represent
initial states and p-sinks goals-states) and Vdis a set of actions. Additionally,
Cp: Ep →R is a cost (or reward) function, and Cd: Ed →[0,1] is a prob-
ability function. A p-vertex has as many d–out-neighbours as the number of
actions associated with the corresponding state. A d–vertex has as many p–
out-neighbours as the number of next states resulted from the corresponding
action. If each d–vertex has exactly one p–out-neighbour and the probabilities
associated with d–arcs are 1, then the d–graph represents a dMDP. In the case
of g-dMDPs d–vertices may have more than one d–out-arc, each of them associ-
ated with probability 1. If a d–graph represents an sMDP, then d–vertices may
also have more than one p–out-neighbour. In this case the probability values
associated with the d–out-arcs of certain d–vertex represent the probability dis-
tribution among the states represented by the corresponding p–out-neighbours.
It is assumed that the sum of the probability values associated with the d–out-
arcs of a certain d–vertex is 1.

If goal states were defined, the sequence of decisions ends when a goal state
is reached. In this case even a finite decision-sequence may be of indefinite
(unpredictable) length, terminating when a goal state is reached. We add to
the d-graph a dummy goal p-vertex and connect all goal vertices to this one via
corresponding d-vertices (all d–in-arcs of the dummy vertex have probability 1).
If parallel initial states were defined we add to the d-graph a dummy starting
p-vertex and connect it to all source-vertices through one d–vertex. We choose
for the p–in-arc of this d–vertex cost/reward 0, and for its d–out-arcs probability
1.

The controller of a dMDP Gselects a finite/infinite length path (containing
p– and d–arcs alternatively) that starts at the starting vertex. Infinite length
paths contain cycles that are traversed infinitely. The controller of an sMDP
or g-dMDPGselects a finite/infinite length d-path. A d-path is a d–sub-graph
with a source-vertex and all p-vertices having at most one d–out-neighbour.
(Since d-vertices of a d-path may have more than one p–out-neighbours, d-paths
may have several branches)

A policy or strategy for a MDP G = (Vp∪Vd, Ep∪Ed) is a function π: Vp →
Vdsuch that for every vp ∈ Vp(excepting the goal vertex) we have (vp, π(vp))
∈ Ep. In other words, a policy corresponds to the selection of one outgoing
arc from each p–vertex (such a policy is called stationary, or time invariant).
A policy πdefines a finite/infinite path (or d-path) that starts at the starting
vertex. Finite paths end at the goal vertex. An infinite path is composed of
a (possibly empty) initial path that leads to a cycle which is repeated over
and over again. d-paths may have both finite and infinite branches. Policies,
as defined above, are Markovian (or memoryless; they depend on history only
through the current state) and deterministic.

Given a policy π we define (recursively) the value functions wπ
p : Vp →R
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(also called as cost- or reward-to-go), and wπ
d : Vd →R as follows (for finite

horizon problems we have discount factor γ =1, and for infinite horizon problems
0<γ<1)

wπ
p (vp) =

{

Cp

(

vp, π(vp)
)

+ γ · wπ
d

(

π(vp)
)

, excepting the goal vertex.

0, for the goal vertex.

wπ
d (vd) =

∑

v
′

p

Cd

(

vd, v
′

p

)

· wπ
p

(

v
′

p

)

for all out− neighbours v
′

p of vd.

Since related to infinite branches we have infinite recursion, the discounted
(0<γ<1) wp-values of vertices that are situated along such branches are limits
of convergent sequences. The wp-value of the starting vertex can be considered
as an optimality criterion (performance measure) for policy π.

We also define the optimal value functions w∗

p : Vp →R, and w∗

d : Vd →R as
follows

w∗

p (vp) = optvd {Cp (vp, vd) + γ · w∗

d (vd) | for all out− neighbours vd of vp}

w∗

d (vd) =
∑

v

Cd

(

vd, v
′

p

)

· w∗

p

(

v
′

p

)

for all out− neighbours v
′

p of vd.

According to the principle of the optimality (the tail of an optimal policy is
optimal for the “tail problem”) the above optimal value functions implicitly
define an optimal policy π∗ (for each p–vertex an “optimal d–out-neighbour” is
chosen), see Katai (2010). For any given discount factor 0<γ<1, the controller
of an infinite horizon MDP always has a single positional policy that produces
optimal paths (or d-paths) from every starting vertex (see Madani, Thorup and
Zwick, 2009).

5. Combined d–graph algorithm to find optimal policies
for finite/ infinite horizon MDPs

In the following we present a combined DP algorithm to find optimal policies
for finite/infinite MDPs represented as a d-graph G(Vp ∪ Vd, Ep ∪ Ed, Cp, Cd).

Computing the w∗

p-value of a p–vertex (excepting the goal vertex) can be
implemented as a gradual updating process based on the values of its d–out-
neighbours (value iteration method). The starting-value is chosen according to
the nature of the optimization problem. The w∗

d-values are recomputed before
every use. The w∗

d-values are considered optimal if they are computed from
optimal w∗

p-values. Katai (2010) defines the following types of updating oper-
ations along p–arcs (if (vp, vd) ∈ Ep and (w∗

d(vd) +Cp(vp, vd)) is “better” than
w∗

p(vp), then w∗

p(vp) is updated with value (w∗

d(vd) +Cp(vp, vd)):

• Complete: based on the optimal value of the corresponding d–vertex.
• Partial : based on an intermediate value of the corresponding d–vertex.
• Effective: effectively improves the value of the corresponding p–vertex.
• Null : does not adjust the value of the corresponding p–vertex.
• Optimal : sets the optimal weight for the corresponding p–vertex. Optimal
updates are complete and effective too.
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Katai (2010) presents three d–graph strategies (d–TOPOLOGICAL,
d–DIJKSTRA, d–BELLMAN–FORD) that can directly be adopted to the
finite MDPs. We extend their application to infinite horizon MDP.

• Function d–DFS(G, topo sequence) inspects if G is cycle free or not,
and (if G is cycle free) it establishes the topological order of the vertices
(topo sequence).
• Procedure d–TOPOLOGICAL(G, topo sequence) considers all the ver-
tices according to their reverse topological order and computes their cor-
responding w∗

p– or w∗

d–values (with γ =1).
• Procedure d–DIJKSTRA(G, dijkstra sequence) applies the Dijkstra strat-
egy in backward way (starting with the goal vertex). This procedure
also stores the order the p–arcs were considered (dijkstra sequence) (with
γ =1).
• Function d–BELLMAN-FORD-tour(G, dijkstra sequence, γ) executes
updating tours along the dijkstra sequence of the p–arcs and returns the
maximum relative updating value.
• Procedure d–PRINT-OPTIMAL-POLICY prints out the optimal path
(or d-path) from the starting vertex to the goal vertex.

If the d–graph G is cycle free, then algorithm d–TOPOLOGICAL solves the
problem most effectively. Otherwise algorithm d–DIJKSTRA is applied first.
If the first Bellman-Ford-tour (with γ =1) does not detect any updates, this
means that d–DIJKSTRA has found the optimal solution. Otherwise the
Bellman-Ford-tour is repeated until no other update is detected or more than
|VP |(the number of p–vertices) tours were performed. If the first repeat-until
loop ends because of its second condition this means that the finite horizon MDP
does not have an optimal solution and, in this case, the algorithm restarts the
Bellman-Ford-tours in their discounted variant (with 0<γ<1). These updating
tours are repeated until the wp*-values of all p-vertices are a good enough ap-
proximation of their optimal value (with a given ε).

ALGORITHM d–optimal-MDP(G, γ)

cycle free ← d–DFS(G, topo sequence)

if (cycle free) then

d–TOPOLOGICAL(G, topo sequence)

else

d–DIJKSTRA(G, dijkstra sequence)

i ← 1

repeat

effective updates← d–BELLMAN-FORD-tour(G, dijkstra sequence,1)

i ← i + 1

until (effective updates = 0) or (i >|VP |)

if (i >|VP |) then //infinite horizon version
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repeat

effective updates ← d–BELLMAN-FORD-tour

(G, dijkstra sequence, γ)

until (effective updates <ε)

endif

endif

d–PRINT-OPTIMAL-POLICY(G)

endALGORITHM

In the following we will illustrate the above strategy on the optimization
problem presented in Section 2. The first version of the problem can be modeled
by a dMDP. The bi-dimensional world represents the state space (cell (1,1)
represents the initial state; we introduced cell (N,M+1) as a dummy goal state).
The out-leading doors of each cell represent the possible actions attached to the
corresponding state. Each action results with probability 1 in a next state
represented by the corresponding neighbor cell. Accordingly, in the attached
d–graph all d–vertices have exactly one d–out-arc. We analyze four sub-cases.

• Version 1/a: All doors are oriented from west to east and from north to
south (see Fig.3). In this case the attached d–graph is cycle free and the
dMDP is solved by procedure d–TOPOLOGICAL.
• Version 1/b: Between all neighbor cells there are bidirectional doors (see
Fig.4). Since the attached d-graph is cyclic and all immediate costs are
positive numbers the dMDP is solved by procedure d–DIJKSTRA.
• Version 1/c: The attached d-graph is cyclic, some cells contain negative
immediate costs (negative cost means reward), but there are no negative
cycles (along which the sum of the immediate cost is negative), see Fig.5.
The dMDP is solved by procedure d–BELLMAN-FORD (it repeats
the procedure d–BELLMAN-FORD-tour, with γ =1, until no effective
updates are made).
• Version 1/d: The attached d-graph has negative cycles (see Fig.6). The
dMDP is solved by the discounted infinite horizon variant of procedure
d–BELLMAN-FORD (it repeats procedure d–BELLMAN-FORD-
tour, with γ<1, until no effective updates greater than a given ε are
made).

The second version of the problem can be modeled by a g-dMDP (discounted
version). Each action may result (with probability 1) in several next states
represented by the corresponding neighbor cells (see Fig.7). Accordingly, in the
attached d–graph d–vertices may have more than one d–out-arc. In the case of
the world presented in Fig. 7 the attached d–graph is cyclic. In this example,
although all the immediate costs are positive numbers, some cycles prove to
be negative in the sense that (due to the “cloning/splitting and cycling” phe-
nomenon) after each traverse of the cycle the cumulated cost decreases (become
lower and lower). Fig. 8 shows the d-path that resulted from applying procedure
d–DIJKSTRA. Fig. 9 shows the optimal d-path that resulted from applying
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the discounted infinite horizon version of procedure d–BELLMAN-FORD.
Notice that the optimal path starting with the initial state includes cycles.

The proper model for the third version of the problem is an sMDP. In this
case each action results in a single next-state, chosen, though, by chance from
a set of alternatives (according to the given probability distribution). As in the
previous version of the problem the optimal policy is represented by a d-path,
but the controller selects (with a certain probability) an ordinary path for the
original agent to follow. Fig. 10 shows the optimal d-path that resulted from
applying the discounted infinite horizon version of procedure d–BELLMAN-
FORD. The most probable path of the agent is in bold.

1 2 3 4

1 1/16 1/15 1/14 1/13

2 9/15 9/22 9/21 1/12

3 1/6 1/13 1/12 1/11

4 1/5 9/12 9/11 9/10

5 1/4 1/3 1/2 1/1 0/0

Figure 3. Bi-dimensional world with all doors oriented from west to east and
from north to south. The cells contain the corresponding immediate costs and
the optimal costs-to-go. Arrows representing the optimal policy are bold. We
also marked an optimal path from the initial state to the goal state

6. Conclusion

The major contributions of this paper are: (1) We have extended the definition
of dMDP to generalized dMDP (g–dMDP) where each action may result (with
probability 1) in more than one next state. Optimization problems characterized
by decisions that result in parallel states can properly be modeled by generalized
dMDPs; (2) By adapting d-graphs to MDPs we have developed a general tool
for representing a larger class of MDPs; (3) We extended the d-graph algorithms
described by Katai (2010) to infinite horizonMDPs and we presented a combined
DP strategy that, after detecting the characteristics of the attached d–graph,
applies the proper DP algorithm that solves optimally the specific problem.
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1 2 3 4

1 1/14 1/13 1/12 1/11

2 9/15 9/16 9/17 1/10

3 1/6 1/7 1/8 1/9

4 1/5 9/12 9/11 9/10

5 1/4 1/3 1/2 1/1 0/0

Figure 4. Bi–dimensional world where between all neighbor cells there are bidi-
rectional doors. The cells contain the immediate costs and the optimal costs-
to-go. Arrows representing the optimal policy are bold. We also marked the
optimal path from the initial state to the goal state

1 2 3 4

1 1/7 1/6 1/5 1/4

2
19/1

6

19/1

7

19/2

0
1/3

3 3/-3 1/-2 3/1 1/2

4 -2/-6
19/1

3

19/2

0
1/2

5 -6/-4 -3/2 4/5 1/1 0/0

Figure 5. Bi-dimensional world where some cells contain negative immediate
costs but there are no negative cycles. The cells contain the corresponding
immediate costs and the optimal costs-to-go. Arrows representing the optimal
policy are bold. We also marked the optimal path from the initial state to the
goal state
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Figure 6. Bi-dimensional world with negative cycles: (4,1), (5,1), (5,2), (4,2),
(4,1). The cells contain the corresponding immediate costs and the optimal
discounted (γ =0.99) costs-to-go. Arrows representing the optimal policy are
bold. We also marked the optimal path starting with the initial state

1 2 3 4

1
1
(6)

1
(6ACE)

1
(6ACE)

1
(4)

2
9

(3567)

9
(35679ABCDE

F)

9
(35679ABCDE

F)

1
(459CD)

3
1

(3567)

1
(35679ABCDE

F)

1
(35679ABCDE

F)

1
(459CD)

4
1

(3567)

9
(35679ABCDE

F)

9
(35679ABCDE

F)

9
(459CD)

5
1
(2)

1
(239AB)

1
(239AB)

1
(0)

Figure 7. Bi-dimensional world. The cells (representing the states) contain
the corresponding immediate costs and the valid actions. The lengths of the
hex-strings represent the number of the valid actions and the hex-digits code
the directions (and implicitly the next states) resulting from the corresponding
action
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Figure 8. d–path representing the policy obtained from procedure d–
DIJKSTRA. The first line of each cell contains the corresponding immediate
costs and the costs-to-go. The second line of each cell contains the selected
hex-digit and the corresponding directions (the bold ones)
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Figure 9. d–path representing the optimal policy obtained from the discounted
infinite horizon version of procedure d–BELLMAN-FORD. The first line of
each cell contains the corresponding immediate costs and the optimal costs-to-
go. The second line of each cell contains the optimal hex-digit and the corre-
sponding directions (the bold ones)
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Figure 10. d–path representing the optimal policy obtained from the discounted
infinite horizon version of procedure d–BELLMAN-FORD. The first line of
each cell contains the corresponding immediate costs and the optimal costs-to-
go. The second line of each cell contains the optimal hex-digit and the corre-
sponding directions (the bolded ones). The most probable path for the original
agent is bold and has probability 0.25
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