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Abstract: We consider a general multiobjective optimization problem
with five basic optimality principles: efficiency, weak ancbper Pareto
optimality, strong efficiency and lexicographic optimglitVe generalize
the concept of trade-off directions defining them as somargbtsurface
of appropriate cones. In convex optimization, the contiig@ne can be
used for all optimality principles except lexicographidiogality, where
the cone of feasible directions is useful. In nonconvex ¢hsecontin-
gent cone and the cone of locally feasible directions witticlegraphic
optimality are helpful. We derive necessary and sufficiemargetrical op-
timality conditions in terms of corresponding trade-offatitions for both
convex and nonconvex cases.
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1. Introduction

The overall goal in multiobjective optimization is to find@uopromise between several
conflicting objectives which is best-fit to the needs of a sieci maker. This comprom-
ise is usually referred to as an optimality principle. Vasanathematical definitions
of the optimality principle can be derived in several diffiet ways depending on the
needs of the solution approaches used. Moreover, sometimmese of one definition
may be more advantageous than some other due to computatiomalexity reasons.
The usage of trade-offs as a tool containing essentialnméition about comprom-
ise has been suggested in a series of papers (see, e.g. a8Sak@w¥ano, 1990), where
certain scalarizing functions were used to define the candepother approach, pro-
posed in Kaliszewski and Michalowski (1995, 1997) consistgenerating solutions
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satisfying some pre-specified bounds on trade-off infoimnaty means of a scalariz-
ing function. In Henig and Buchanan (1997) for convex (inldhg nondifferentiable)
problems, the concept of trade-offs has been generalizediinone of trade-off dir-
ections, which was defined as a Pareto optimal surface of thgemt (tangent) cone
located at the point considered.

The usage of contingent and normal cones as well as the cdeasitble directions
is a natural choice in the case of convex optimization (seg, Rockafellar, 1970,
1981). In nonconvex optimization, the main difficulty assgue to the fact that the
contingent cone as well as the cone of feasible directionslaos® convexity. Two ad-
ditional types of cones have been shown to be helpful - targmre and cone of local
feasible directions (see, e.g., Clarke, 1983). The gueeahproperty of convexity of
these cones assures that they can be used to overcome stoudtigs which appear
in nonconvex optimization. However, in nonconvex casegéah cones do not neces-
sarily represent the shape of the set considered eveny@ealithe relation to trade-off
directions is lost. Therefore, to define trade-off diregidn nonconvex case, we must
use nonconvex contingent cones as it was suggested ohgimdlee and Nakayama
(1997) for smooth problems and later generalized for noessarily differentiable
problems in Miettinen and Makela (2002).

The aim of this paper is to describe necessary and sufficiirhality conditions
in terms of trade-off directions for both convex and non@neases. The paper is
organized as follows. In Section 2, we formulate a generdlfiafjective problem and
introduce five basic optimality principles, which are thesncommon in multiobject-
ive optimization. We give traditional definitions and gedrizal ones via appropriate
cones. For every optimality principle considered, we defiereralized trade-off dir-
ections for convex and nonconvex cases in Section 3. Givingamvexity naturally
means that we need local instead of global analysis. Seétfmesents the main res-
ults showing interrelation between optimal solutions andesponding generalized
trade-off directions. The results are presented for comrek nonconvex cases and
summarized in two schemes. Section 5 is devoted to somérdtive examples in
biobjective case. Final remarks appear in Section 6.

2. Basic optimality principles

We consider general multiobjective optimization problerhthe following form:
min { f1(x), f2(x),..., fk(X)},
XES

where fi : R" — R areobjective functiondor all i € I := {1,...,k}. Thedecision
vectorx belongs to the nonempfgasible set 8 R". The image of the feasible set
is denoted byZ C R¥, i.e.Z := f(S). Elements o are termedbjective vectorand
they are denoted ky= f(x) = (f1(x), f2(x), ..., fik(x))T. Additionally, for non-convex
case we assume
() fi:R"— R are continuous for all€ Iy;
(i) f(B(x;€)) open for allx € Sande > 0, whereB(x; €) is an open balwith radius

€ and centex.
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The Minkowski sum of two setd andE is defined byA+ E = {a+e|ac A ec
E}. The interior, closure, convex hull and complement of afsate denoted by inA,
cl A, convA andAC, respectively.

A setAis aconeif Ax € A wheneverx € A andA > 0. We denote the positive
orthant ofR* by RX = {d € R¥ | d; > O for everyi € I}. The positive orthant is also
known asstandard ordering cone The negative ortharR¥ is defined respectively.
Note, thatR¥ andR¥ are closed convex cones.

In what follows, the notatiom < y for z,y € Rk means that; < y; for everyi € Iy
and, correspondingly, <y stands foz <'y; for everyi € Iy.

Simultaneous optimization of several objectives for noldfgctive optimization
problem is not a straightforward task. Contrary to the tmglsi objective case, the
concept of optimality is not unique in multiobjective cases

Below we give traditional definitions of five well-known andost fundamental
principles of optimality (see, e.g., Ehrgott, 2005; Herii§82; Miettinen, 1999).

Weak Pareto OptimalityAn objective vectorz* € Z is weakly Pareto optimaf there
does not exist another objective vectar Z such thaiz; < Z for all i € Ii.
Pareto optimality or efficiencyAn objective vector* € Z is Pareto optimabr efficient
if there does not exist another objective veaerZ such that; <z foralli € Ix

andzj < zj for at least one index € I.

Proper Pareto Optimality.An objective vectorz* € Z is properly Pareto optimalf
there exists no objective vectarc Z such thatz € Z* + C for some convex
coneC, RX \ {0} C intC, attached ta*. Any Pareto optimal objective vector
which is not properly Pareto optimal is calledproperly Pareto optimal

Strong EfficiencyAn objective vectoe* € Z is strongly Pareto optimaif for all i € Iy
there exists no objective vectoe Z such tha; < Z* or, in other wordsz* € Z
optimizes allz, i € I.

Lexicographic Optimality. An objective vectoz* € Z is lexicographically optimalif
for all other objective vectaz € Z one of the following two conditions holds:
1)z=2"
2)Jiel: (Z<z)ANVjelir: z =z;j), wherelg = 0.

Next we redefine the five sets of efficient solutions by usingraepriate ordering
cones. ltis trivial to verify that the definitions of optinitgland efficiency formulated
above are equivalent to those following below.

DEFINITION 1 The weakly Pareto optimal set is
WPZ):={zeZ| (z+intRX)nZ = 0};
the Pareto optimal set is
PO(Z):={zeZ|(z+R"\ {0})nZ=0};
the properly Pareto optimal set is defined as

PP(Z):={ze€ Z| (z+C\{0})NZ =0}
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for some convex cone C (chosen beforehand far alz) such thaR¥ \ {0} C intC;
the strongly efficient set is

SEZ):={zcZ|(z+ (R )nz=0};
and the lexicographically optimal set is
LO(Z) = {z€Z| (z+ (%) NZ =0},

where( 'fax)c is a complement cone to the lexicographic cone which is dibfisdol-
lows

Ck,:={0}U{deR¥|3iclxsuchthatd>0and d =0Vj <i}.

Note that
SE(Z) c PP(Z) c PO(Z) CWP(Z),

and
LO(Z) Cc PP(Z) C PO(Z) CWP(Z).

The corresponding local analogues of the five optimalitg E&{ P(Z), LPO(Z),
LPP(Z), LSE(Z), LLO(Z) can be defined in a similar way if we assume that the cor-
responding optimality conditions hold within some open H&B(x;d) NS), 6 > 0.

To guarantee the existence of an open neighborhood, we usmntonvex case two
additional assumption§) and (ii) on function f(x). In a convex case, local and
global concepts are equal. Note the&8E(Z) C LPP(Z) Cc LPO(Z) C LWP(Z) and
LSE(Z) € LLO(Z) C LPO(Z) C LWP(Z).

3. Generalized trade-off directions

The concept of trade-offs in multiobjective optimizatiena key point to define com-
promise between conflicting objectives. It can be used terdes solutions which
linearly approximate the feasible region and which are milytnon-dominated with
respect to the given optimality principle. The trade-ofiedtions can be used in many
algorithms requiring specifying directions which may Idadt to the solution that is
most preferred by the decision maker (see e.g. Branke e2@0D3 and Miettinen,
1999).

Since the contingent cones linearly approximate the shbfhe deasible set,
equally well in both convex (global approximation) and nomeex (local approxima-
tion) cases, they can be used to define the generalizedafédigections. A (weakly)
Pareto surface of the contingent cone serves for that parpos

Next we define several geometrical basic cones (see, e.ckafadlar, 1970).

DEFINITION 2 The contingent cone of a setZRK atz € Z is defined as
K2(Z) := {d € R¥| there exist{ >, 0 andd; — d such thatz +t; -d; € Z}.
DEFINITION 3 The cone of feasible directions of a setRX atz ¢ Z is denoted by

D,(Z) := {d e R¥| there exists t> 0 such thaz+t-d € Z}.
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We introduce the following definition which provides regitiacondition forZ at
zeZ

DEFINITION 4 (see, e.g., Aubin, Frankowska, 2008) The set Z is calledaegtz € Z

Notice that regularity condition is equivalent to the Kadrtsuhn-Tucker regular-
ity condition (or the so-called KKT constraint qualificatiD,(Z) = cl A,(Z), where
A;(Z) is a cone of attainable directions, which is also known aeiimontingent cone,
i.e. clAz(Z) =Ky(2) (see, e.g., Bazaraa, Sherali, Shetty, 2006).

In nonconvex case, the cone of feasible directibpéZ) does not describe the
shape ofZ locally. Thus, we introduce a cone of locally feasible dii@ts, which
reflects the shape @ locally (see, e.g., Makela, Neittaanmaki, 1992).

DEFINITION 5 The cone of locally feasible directions of a set R atz € Z is de-
noted by

F,(Z) = {d € RX| there exists t> 0 such thaz+1-d € Z forall T € (0,t]}.

The following definition provides local regularity conditi forZ atz € Z.
DEFINITION 6 The set Z is called locally regular ate Z if F;(Z) = K;(2).

For nonconvex cases, Clarke (1983) has defined a convexrtbogee in the fol-
lowing way:

DEFINITION 7 The tangent cone of a setZRK at z € Z is given by the formula
T,(Z) = {d e R¥|

forallt; \,Oandzj — zwithzj € Z,
there existsl; — d with z; +t; - dj € Z}.

The following basic relations can be derived from the deafing of the concepts
used in Makela, Neittaanmaki (1992), and Rockafell&8(0).

LEMMA 1 For the cones KZ), D;(Z), T,(Z) and R(Z) we have the following

a) Kz(Z) and §(Z) are closed and AZ) is convex.

b) 0 € K,(Z)ND2(Z) NT(Z) NF(Z).

C) ZC z+Dy(2).

d) ¢l F,(Z) C Ky(Z) C ¢l D,(2).

e) T;(Z) C Ky(2).

f) If Z is convex, thenl F;(Z) = T,(Z) = Kz(Z) = ¢l D(Z). Moreover E(Z) = D(2Z).

Note that, under convexity assumption, for @a®yZ we have cF(Z) =K;(Z) (see,
e.g., Rockafellar, 1981), i.e. local regularity defines taslionger requirement on a
local structure of a set than the convexity assumption. Astme time local regularity
does not necessarily imply B, (Z) = K(Z), the condition which is guaranteed under
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Z2

z1

Figure 1. Nonconvex contingent coKe(Z)

clD;z(Z2) =Kz(2) <« Regularity
)
Convexity = Tangentregularity
)
ClR(Z2)=Ks(2) < Local regularity

Figure 2. Interconnection between various types of regular

convexity assumption. For more advance properties of tarnged contingent cones
as well as some other related concepts of cones, the reageranault, e.g., Aubin,
Frankowska (2008).

Even though contingent cones are generally nonconvex,t¢bavexity is guaran-
teed under special circumstances (see, e.g., Aubin, Fraskeg 2008 and Rockafellar,
1970).

DEFINITION 8 The set Z is called tangentially regular a& Z if T,(Z) = K;(2).

Trivially, we can see that e.g. convex sets are always taragmregular.

Note that in order to formulate some of optimality condisame use four different
assumptions about structural propertieZefconvexity, tangent regularity, regularity
and local regularity. In general, all these are differerd dn not directly imply each
other. The interconnections between the four regularisyiagptions are presented in
Fig. 2. Also note that assuming all three types of regularigy not guarantee the
property of convexity as Fig. 3 shows. Indeed, in this exanghl four cones are the
same (contingent cone, tangent cone as well as cones dblzasid locally feasible
directions), and they are equal to the half-space whichdatér above (including the
tangent line itself) the tangent line at Z.

The sets of generalized trade-off directions can be defiaddllaws
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z1

Figure 3.Z is regular, tangentially and locally regularat Z, but not convex

DEFINITION 9 The sets of generalized trade-off directions are definedlésAfs:
- in case of weak Pareto optimality:z(Z) := WPR(K;(Z));
- in case of Pareto optimality (efficiency)pg(Z) := PO(Kz(Z));
- in case of proper Pareto optimality: gp(Z) := PO(Kz(2));
- in case of strong efficiency: $(Z) := SE(K;(Z2));
- in case of lexicographic optimality: g (Z) := LO(F;(2)).

Note thatGpo(Z) = Gpp(Z) by definition, since Pareto optimality can be seen as
an extreme case of proper Pareto optimality v@te= R¥ . It is also easy to see that
in convex cas&.O(F;(Z)) = LO(D;(Z)) andSE(K,(Z)) = SE(D,(Z)). This follows
directly from the definitions and Lemma 1.

Notice that, since two solutions are considered to be miytleticographically
non-dominated if they have the same objective vectors, we k@ use the cone of
feasible directions in the definition of the set of genemdirade-off directions in case
with lexicographic optimality. Indeed, the set of generadl trade-off directions in case
with local lexicographic optimality is either empty or onbye pointO (zero vector,
origin of F;(Z)), so it becomes indifferent D, (Z) is closed or open, what is not true
in cases with other types of local optimality.

4. Main results
4.1. Convex case

Here we formulate and prove the basic results concerniatjoak between optimality
and the corresponding set of generalized trade-off doestin convex case.

THEOREM1 Let Z be convex. B € WP(Z), then Gyp(Z) # 0.

This result directly follows from the result of forthcomifigneorem 6 and the fact that
WP(Z) C LWP(Z).
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THEOREM 2 Let Z be convex. I € PO(Z), then Geo(Z) # 0 under assumption that
Z is regular. Moreover, Go(Z) # 0 impliesz € PO(Z).

Proof. Assumez € PO(Z). Suppose thabpo(Z) = 0. Then(d+ R\ {0})NKz(Z) # 0
for all d € K,(Z). Takingd = 0 (0 € K(2)), we get(RK\{0})NK,(Z) # 0, and
due to regularity assumptiofRk \ {0}) N D,(Z) # 0. The last contradicts the initial
assumption that € PO(Z) (see Theorem 2, Miettinen, Makela, 2001).

Now assumg € Gpo(Z), y # 0, then(y +RX\ {0}) NK,(Z) = 0 and(y + R \ {0})
Ncl Dz(Z) = 0 under assumption thatis convex. Therfy +R*\{0})ND,(Z) = 0,
and hence (due to linearity and convexity @f(Z) in convex case), we hava +
RK\{0})ND,(Z) = 0,. Thus, we havéz+RK\{0})NZ=0,i.e. zc PO(Z). This
ends the proof.

THEOREM 3 Let Z be convex. The solutiare PP(Z) if and only if Gop(Z) # 0.

This result directly follows from the result of forthcomifigneorem 9 and the fact
that convex set is always tangentially regular and the featRP(Z) C LPP(Z).

THEOREM4 Let Z be convex. The solutiane SE(Z) if and only if Gsg(Z) # 0, or
equivalently Gg(Z) = {0}.

Proof. First we show that € SE(Z) if and only if 0 € Gsg(Z). Indeed (see Corollary
3.1, Mékela, Nikulin, 2009),

z2€ SE(Z) & K,(Z)NRK =K,(2) &

(0+ (RX))NK4(2) =0 = 0 € Gsg(2).

Now it remains to show that i € K;(Z), y # 0, theny ¢ Gsg(Z). Indeed, ify €
Kz(Z), y # 0, theny € RK. Thus,0 € (y+ (RX )®) NK,(Z), and thery & Gsg(Z). This
ends the proof.

THEOREMS5 Let Z be convex. The solutiane LO(Z) if and only if G o(Z) # 0, or
equivalently Go(Z) = {0}.

Proof. First we show that € LO(Z) if and only if 0 € G_o(Z). Indeed (see Corollary
4.1, Makela, Nikulin, 2009),

z2e LO(Z) & Do(Z)NCE, = D,(2) &

(04 (CK))ND,(Z) =0 = 0 € GLo(2).

Now it remains to show that ifl € D,(Z), d # 0, thend ¢ G o(Z). Indeed, ifd €
D,(Z), d # 0, thend € CK, and—d € (CK,)®, i.e. d+ (—d) = 0 € D,(Z), and then
(d+ (CK)C)ND,(Z) # 0. Thusd & Go(Z). This ends the proof.
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4.2. Nonconvex case

Here we formulate and prove the basic results concerniatjoak between optimality
and the corresponding set of generalized trade-off doastin nonconvex case. Notice
also that assumption (ii), made at the beginning of the papdrnot used at all in
convex case, in nonconvex settings is going to play a morgfgignt role. The actual
meaning of this assumption is solely technical: it servegriavent some degenerate
cases such as e.g. mapping an open ball to a point.

THEOREM6 (see Miettinen, Mkeh, 2003)
If ze LWP(Z), then Gyp(Z) # 0.

To prove the next theorem we need one known result:

THEOREM 7 (see Miettinen, Mkek, 2001)
If ze LPO(Z), then

(z+RK\{0})NF,(Z) = 0.

THEOREMS8 If z € LPO(Z), then Gopo(Z) # 0 under the assumption that Z is locally
regular. Moreover, Go(Z) # 0 impliesz € LPO(Z) under the assumptions that Z is
both locally and tangentially regular.

Proof. Assumez € LPO(Z). Suppose thaBpo(Z) = 0. Then(d+R¥ \ {0}) NK(Z) #
0 for alld € K,(Z). Takingd = 0 (0 € K,(Z)), we get(R¥\{0}) NK(Z) # 0, and due
to local regularity assumptiofR¥\{0}) NF,(Z) # 0. The last contradicts (due to
Theorem 7) the initial assumption tha& LPO(Z).

Now assumg € Gpo(Z), y # 0; then

(y+R¥\{0})NK,(Z) = 0, and
(y+R\{0})NF,(2) =0

under the assumption thatis locally regular. IfZ is tangentially regular, then (due
to linearity and convexity oF,(Z) under tangent regularity), we hage+ RX\{0}) N
F:(Z) = 0. Thus, we have € LPO(Z). This ends the proof.

THEOREM9 (see Miettinen, Mkek, 2002) Ifz € LPP(Z), then Gop(Z) # 0.

Moreover, Gp(Z) # 0 impliesz € LPP(Z) under the assumption that Z is tangentially
regular.

To prove the next theorem we are going to use one known result:
THEOREM 10 (see Makeh, Nikulin, 2009) Iz € LSE, then
K2(Z) NRX = K,(2).

THEOREM 11 If z € LSE(Z), then Gg(Z) # 0, or equivalently Gg(Z) = {0}.
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Proof. Letz € LSE(Z). Then by Theorem 10
K2(Z)NRX = K,(2).
Then it follows that
(0+R*\{0})NK,(Z) = 0= 0 € Gsg(Z).

Now it remains to show that i € K;(Z), y # 0, theny ¢ Gsg(Z). Indeed, if
y € K,(2), y # 0, theny € RX. Thus,0 € (y+ (RX)®)NK,(Z), and thery ¢ Gsg(Z).
This ends the proof.

THEOREM12 If ze LLO(Z), then Go(Z) # 0, or equivalently Go(Z) = {0}.
Proof. Letz € LLO(Z). Then (see Theorem 5, Makela, Nikulin, 2009)
F2(Z) NCly = F(2).

Now it remains to show that ifl € F,(Z), d # 0O, thend ¢ G o(Z). Indeed, ifd €
F2(Z), d # 0, thend € C£, and—d € (C)C, i.e. d+ (—d) = 0 € F,(Z), and then

(d+ (CK)C) NF-(Z) # 0. Thusd ¢ GLo(Z). This ends the proof.

5. Examples

We will illustrate geometrical meaning of the basic res@ittisnulated above via the
following examples in biobjective case.
To construct the example, we will use the following norms m abitrary g—
dimensional vector spad®¥:
- L1 orlinear norm
Iyll:= 3 Ivil, y €R%,
i€lq

- L, or Euclideannorm

I€lq

llyll2 = Z(yi)z, y €RY,;

- Lo or Chebyshemorm
[1Ylleo := maxjyil, y € RY.
q

The first example describes the results in convex case.

Convex case example

Letz:= f(X) = (f1(x), f2(x)), wheref1(x) = X1 and f2(x) = x2. Assume that the
sets of feasible solutions are given as

Xa:={x| I <1},
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Xo:={x| 2= 1},

X3 := {x| 1X] | < 1}.

Then, respectively, we have

Z; = q(fix),f2(X)): xeXip=142] ||z]l1 <17,
Z, = (fo(X), fa(X)) : xeXop =12 ||2ll2< 1+,
Zg = {10, f(x): xeXs} = {2 2l <1}.

Fig. 4 represent®; in objective space, arw= (—1,0). Then we have
D)
{Z|z>-zn-1L<zn+1 1<z},

i.e. Zp is regular as well as tangentially and locally regular ahpmi

i)
ze WP(Z;) = PO(Zy) = PP(Zy) =
{z] n+2=-1,-1<z <0, -1<2 <0},
z2€LO(Z1) ={(-1,0)}, z¢ SE(Z1) = 0;
i)

Gwr(Z1) = Gpo(Z1) = Gpp(Z1) =
{d|dy=—-d1 -1, —1<dy},
GLo(Z1) = {0}, Gse(Z1) = 0.
Note that iii) is consistent with the results of Theoremsrbtigh 5.

Fig. 5 representsg; in objective space ard= (—%, —%). Then we have

D)
Ki(Z2) = To(Z2) = {z]| 22 >~z — V2},
D:(Z2) = F(Z2) = {z| 22>~z — V2},
i.e. Zy is neither regular nor locally regular at point but it is tangentially
regular;
ii)
ZEWR(Z) =PO(Zy) = {z| Z+2 =1, -1<z <0, -1<2 <0},
2ePP(Z)={z| Z2+B=1 -1<2<0, -1<2 <0},
z¢ LO(Zy) = {(-1,0)}, z¢ SE(Z») = 0;
iii)

Gwp(Z2) = Gpo(Z2) = Gpp(Z2) = {d | dp = —d; — V2},
GLo(Z2) =0, Gsg(Z2) = 0.
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(0.0) z1

-1.0)

©.-1)

Figure 4.L,-case

Note that iii) corresponds to the results of Theorems 1 thindh
Fig. 6 represent&; in objective space ard= (—1,—1). Then we have

i)
F2(Z3) = D2(Zs) = Kz(Z3) = To(Zs) =
{z|n>-1,71 > -1},
i.e. Zg is regular as well as tangentially and locally regular anpzi
ii)
zeWP(Z3)={z|=-1 -1<z1<1}U{z|za=-1 -1<z <1},
YAS PO(Z;;) = PP(Z3) = LO(Z3) = SE(Z3) = {(—1, —1)};
iii)

GWP(Z3) = {d | h=-1 -1< dl}U{d | di=-1 -1< dz} #£0,
Gpo(Z3) = Gpp(Z3) = GLo(Z3) = Gse(Z3) = {0} # 0.

Note that iii) is consistent with the results of Theoremsrbtigh 5.
The second example illustrates the results in nonconvex cas

Nonconvex case example

Fig. 7 represent® in objective space and some fixed pairg Z. Then we have
i) Zis neither regular nor locally regular at pomtHowever, it is tangentially regular;

i)
ze LWP(Z), z€ LPO(Z), z€ LPP(Z),
z¢LLO(Z), z¢ LSE(Z);
ii)
Gwr(Z) = Gpo(Z) = Gpp(Z) # 0,
GLo(Z) =0, Gsg(Z) = 0.
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zl

Figure 5.L,-case

X z2
(0,0) Z
¢1.0) -
¢1.-1) ©.-1)

Figure 6.L.-case

z1

Figure 7. The first example for nonconvéx
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z1

Figure 8. The second example for nonconZex

Fig. 8 representz in objective space and some fixed pairg Z. Then we have
i) Zis neither regular nor locally regular at pomtHowever, it is tangentially regular;
ii)
ze LWP(Z), ze LPO(Z), z€ LLO(2),

2¢LPP(Z), z¢ LSE(Z);

i
Gwp(Z) # 0, Gpo(Z) = Gpp(Z) =10,

GLo(Z) = {0} # 0, Gsg(Z) = 0.

Note that in both nonconvex examplesiiii) is consistent withresults of Theorems
6 through 12.

6. Conclusions

In this paper we introduced and characterized the conceadé-off directions for
five most common optimality principles in multiobjectivetopization. We generally
followed the approach, initially proposed by Henig and Bamtdn (1997), then fol-
lowed by Lee and Nakayama (1997), as well as Miettinen ankel&(2002, 2003),
where trade-off directions are defined via some optimalasgrbf appropriate cones.
The approach of Henig and Buchanan (1997) is independeheadalarizing func-
tion and has only minor presumptions to the problem trealdte cone of trade-off
directions is defined via Pareto optimal surface of the tahgene and the treatment
is based on classical tools of convex analysis. The spetté@itioon was made to the
proper Pareto optimality. To maintain nonconvexity Lee Biatayama (1997) sugges-
ted to use generalized trade-off directions employing namex contingent cone and
formulating some essential results assuming differeifitiabSome related results are
also given in Aubin, Frankowska (2008) and Luc (1989) in mgereral spaces.



Generalizing trade-off directions in multiobjective opization 575

Relaxing the convexity means that we have to analyze smajhberhoods of
points instead of the whole set. We derive our results forreeg® framework im-
posing some additional local regularity properties to rtesimnonconvexity as well as
some general regularity properties in convex case for tleddst” optimality prin-
ciples. Only few extra assumptions about the problem itgetionconvex case are
needed to avoid degeneracy in our analysis. Under our apipreee specified neces-
sary and in some cases also sufficient conditions of optiynalierms of correspond-
ing trade-off directions in both convex and nonconvex ca$ée results obtained not
only summarize and structure some already known facts atamig-off directions but
also shed new light on their structural properties, empiagsome fundamental sim-
ilarities and differences existing in convex and noncoraimization. An interesting
topic of further research is to investigate applicabilifylte proposed concepts in dif-
ferent multiobjective interactive methods (see, e.g.nReaDeb, Miettinen, Slowinski,
2008).

Now we shortly analyze the similarity and difference betwélee results in two
cases: convex and nonconvex. Here we would like to emphasizéacts about the
results. The first fact is that some conditions, which aressary and sufficient (under
some extra assumptions) for optimality in convex case, ramsformed into neces-
sary but not sufficient conditions for local optimality inmmmonvex case. The loss of
sufficiency can be explained by the fact that the above-ropeatl conditions use the
contingent cone, which may have "bad” directions towara@sitgility. In the case with
proper Pareto optimality, tangent regularity is cruciaptove sufficiency. Sufficiency
in Pareto case is not guaranteed, but it can be achieved lgsimpsome regularity
rules, which actually create local convexity towards sorineations but keep the re-
maining areas irregular, i.e. nonconvex. The local anddgahgegularity is used to
prove the sufficiency. To investigate if the the assumptimingngent regularity and
local regularity could be weakened is an interesting dioector continuation of re-
search in this area. Secondly, we noticed that in the casexifdgraphic and strong
efficiency, the set of generalized trade-off directiongtisex empty or it contains zero
vector only. This reflects the fact that these two optimabitynciples do not contain
non-zero trade-offs, i.e. there is no meaningful comprerbhetween objectives in these
cases. Indeed, the lexicographic optimality principlevimes sequential optimization,
and strong efficiency is a kind of parallel optimization, \skadeas are closer to single
objective than to multiple objective optimization. Deghis, non-emptiness of the set
of generalized trade-offs is quite informative itself, ahdrefore generalized trade-offs
can be seen as an alternative advanced tool to describevéreaitimality conditions
for all five optimality principles considered in the paper.
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