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Abstract: A double-well energy expressed as a minimum of two
quadratic functions, called phase energies, is studied taking into ac-
count minimization of the corresponding integral functional. Such
integral, as being not sequentially weakly lower semicontinuous, does
not admit classical minimizers. To derive the relaxation formula for
the infimum, the appropriate minimizing sequence is constructed.
It consists of solutions of some approximating convex problems in-
volving characteristic functions related to the phase energies. The
weak limit of this sequence and the weak limit of the sequence of
solutions of dual problems combined with the weak-star limits of
the characteristic functions related to the phase energies allow to
establish the final relaxation formula. It is also shown that infimum
can be expressed by the Young measure associated with constructed
minimizing sequence. An explicit form of Young measure in some
regions of the involved domain is calculated.

Keywords: nonconvex integrand, minimum of convex func-
tions, duality, parameterized Young measures.

1. Introduction

1.1. Generalities

One of important problems in the calculus of variations and mechanics of solids
is minimization of the functional of the form

J (u) =

∫

Ω

f(x, u(x), Du(x))dx,
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where Ω is a nonempty Lebesgue measurable bounded domain in R
n with suf-

ficiently smooth boundary, u : Ω → R
m is a function from a suitable Sobolev

space and f : Ω×R
m×R

mn → R is a given function. (In physics or engineering
we have m = n, u is called the displacement of the elastic body Ω and f is
called the density of the internal energy.)

It is known that if the integrand f satisfies Carathéodory and suitable growth
conditions, then its quasiconvexity (in the sense of Morrey, 1966) with respect
to the third variable is equivalent to the sequential lower semicontinuity (in an
appropriate topology) of J . This, in turn, guarantees that the limit v0 of con-
vergent (in appropriate topology) subsequence of the minimizing for J sequence
{vk} is a minimum of J . This is the basis of the direct method in the calculus
of variations. Usually the most challenging task of this method is guaranteeing
sequential lower semicontinuity of J .

Situation becomes much more complicated if the integrand is not quasicon-
vex. In this case the minimized functional does not generally attain its infimum.
Basically, there are two ways to proceed in this case.

The first one is to ‘quasiconvexify’ the original functional and to gather “non-
convexities” into its quasiconvex envelope (Morrey, 1966; Ball, 1977; Ball and
Murat, 1984; Acerbi and Fusco, 1984; Dacorogna, 1989; Kohn, 1991; Kohn and
Strang, 1986; Tartar, 1975; Murat, 1979; Tartar, 1979; Fonseca, 1988; Fonseca
and Müller, 1993; Fonseca and Rybka, 1992; Buttazzo, 1989; Dal Maso, 1993;
Ambrosio, 1990; Bouchitte, Braides and Buttazzo, 1995; Allaire and Francroft,
1998; Allaire and Lods, 1999; and the references quoted there). However, com-
puting explicit form of the quasiconvex envelope is very difficult in practice.
Further, carrying out this procedure (when possible) erases some important
information concerning behaviour of the minimizing sequences. Minimizers of
quasiconvexifications themselves are not sufficient to characterize properly os-
cillatory phenomena of such problems (microstructural features describing fine
mixtures of the phases in the phase transition problems, for instance). Another
way is to enlarge the space of admissible functions from Sobolev spaces to the
space of parameterized Young measures, Young (1937). In this approach the
Young measures can be regarded as means of summarizing the spatial oscillatory
properties of minimizing sequences, thus conserving some of that information.
With this respect we refer the reader to Young (1969), Kinderlehrer and Pe-
dregal (1991), Chipot and Kinderlehrer (1988), Ball and James (1987), James
and Kinderlehrer (1989), Ball and Murat (1984), Murat (1979), Ericksen (1980),
Pedregal (1997), Tartar (1991) and the references therein.

From the application point of view, the detailed structure of minimizing se-
quences including the behavioral characteristics of the phases involved appears
to be as much important as the minimizers themselves. Unfortunately, it is
a very difficult task to compute the parameterized Young measures associated
with a minimizing sequence.
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1.2. About the contents

The aim of this paper is to solve a nonconvex optimization problem in the case
when the functional to be minimized has integrand expressed as a minimum of
two quadratic functions. Such integrand is not, in general, quasiconvex. Namely,
the nonconvex minimization problem of the form

inf
v∈H1

0
(Ω;Rn)

∫

Ω

min
{

1
2a |ε(v) + C|

2
, 1

2b |ε(v) +D|
2
}
dx := α (P )

is considered, where ε(v) is the symmetrized gradient of v ∈ H1
0 (Ω;R

n), i.e.
ε(v) := 1

2 (∇v +∇T v).
Here the symbol “ |·|” stands for the Euclidean norm in R

n×n
sym , while H1

0 (Ω;R
n)

denotes the Sobolev space of vector-valued functions square integrable together
with their first partial distributional derivatives in a bounded region Ω ⊂ R

n.
The idea is to approximate nonconvex problem by convex ones as proposed in
Naniewicz (2001). As a result we obtain the basic Theorem 1 in which we give
explicit formulas for the infimum α of the nonconvex problem (P ). Infimum α

is a limit of a sequence whose elements are infima of the suitably formulated
convex problems. The latter are treated by the well established methods of
Convex Analysis.

The paper is organized as follows:

• in Section 2 Theorem 4 of Naniewicz (2001) is used to formulate convex
optimization problems (P k) approximating (P ) together with correspond-
ing dual (in the Fenchel sense) problems (P k)⋆ . This makes it possible
to write down the representations of the elements of the sequence {αk} of
infima in (P k).

• Section 3 contains the compensated compactness type results for the se-
quences {uk} and {pk}. Namely, the weak limit of the sequence {pk ·ε(uk)}
is obtained, where pk is the solution of the dual problem (P k)⋆, {uk} is
the minimizing sequence for (P ) and ε(·) is the symmetrized gradient in
the functional to be minimized.

• the results of the above two Sections are then used in Section 4 to proceed
with calculations leading to the main result of the paper. This is Theorem
1, where explicit formulas are established for α = inf(J ) – the infimum in
the nonconvex problem. These formulas involve

– weak limit of the minimizing sequence {uk};

– weak limit of sequence {pk} of solutions of the problems dual to
approximating (P ) convex problems;

– weak∗ limits of the sequences of characteristic functions {χk
a} and

{χk
b} related to the phases 1

2a |ε(v) + C|2 and 1
2b |ε(v) +D|2, respec-

tively.

• Theorem 2 of Section 5 gives the infimum α fully expressed by the paramet–
rized Young measure associated with the minimizing sequence. It also es-
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tablishes some relations between the weak∗ limit of the sequence {ψk} =
{χk

b − χk
a} and the related parameterized measures.

2. Statement of the problem and its approximation

Let Ω ⊂ R
n be a bounded domain in R

n with sufficiently smooth boundary ∂Ω.
Set

J (u) =

∫

Ω

min
{

1
2a |ε(u) + C|

2
, 12b |ε(u) +D|

2}
dx, u ∈ H1

0 (Ω;R
n).

The problem to be considered here is

inf
{
J (u) : u ∈ H1

0 (Ω;R
n)
}
:= α, (P )

where u : Ω ⊂ R
n → R

n is a competing vector-valued function from the
Sobolev space H1

0 (Ω;R
n), ε(u) ∈ L2(Ω;Rn×n

sym ) is the symmetrized gradient of
u ∈ H1

0 (Ω;R
n), C,D ∈ L∞(Ω;Rn×n

sym ) and where a, b ∈ L∞(Ω) are such that
a(x), b(x) ≥ δ > 0 a.e. in Ω for a positive constant δ. Theorem 4 of Naniewicz
(2001) ensures the existence of sequences {uk} ⊂ H1

0 (Ω;R
n), χk

a : Ω → {0, 1}
and χk

b : Ω → {0, 1}, χk
a + χk

b ≡ 1, with the properties that
(a) {uk} is a minimizing sequence for (P ),
(b) uk → u weakly in H1

0 (Ω;R
n) as k → ∞,

(c) χk
a → χa, χk

b → χb weak∗ in L∞(Ω) as k → ∞, where χa : Ω → [0, 1],
χb : Ω → [0, 1] with χa + χb ≡ 1,

(d)
∫
Ω

[ 12χ
k
aa

∣∣ε(uk) + C
∣∣2 + 1

2χ
k
b b

∣∣ε(uk) +D
∣∣2] dx := αk → α as k → ∞,

(e)
∫
Ω

[ 12χ
k
aa

∣∣ε(uk) + C
∣∣2 + 1

2χ
k
b b

∣∣ε(uk) +D
∣∣2] dx ≤

≤
∫
Ω

[ 12χ
k
aa |ε(w) + C|2 + 1

2χ
k
b b |ε(w) +D|2] dx, ∀ w ∈ H1

0 (Ω;R
n).

From the same Theorem 4 it also follows that:

(i) uk is a solution of the convex optimization problem

inf
{
J k(v) : v ∈ H1

0 (Ω;R
n)
}
:= αk, (P k)

where

J k(v) =

∫

Ω

[1
2
χk
aa |ε(v) + C|2 +

1

2
χk
b b |ε(v) +D|2

]
dx, v ∈ H1

0 (Ω;R
n),

i.e.

J k(uk) = αk;

(ii) the sequence {αk} of infima of convex problems (P k) is convergent to
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α = inf(J ).

Now we shall give an explicit characterization of the terms of sequence {αk}.
We will use Fenchel duality theorem (Fenchel, 1951; also Ekeland and Temam,
1976; Aubin,1993).

Before formulating dual minimization problems we introduce some notation.
Let ψk be given by

ψk = χk
b − χk

a. (2.1)

Note that

(ψk)2 = 1. (2.2)

Further, define

mk := χk
aa+ χk

b b,

and

A+ :=
aC + bD

2

A− :=
bD − aC

2

Bk :=
a |C|

2
+ b |D|

2

2
+ ψk b |D|

2
− a |C|

2

2
.





(2.3)

Using the properties of the scalar product we see that

χk
aaC + χk

b bC =
aC + bD

2
+ ψk bD − aC

2
,

1
2χ

k
aa |C|

2
+ 1

2χ
k
b b |D|

2
= 1

2

(
a |C|

2
+ b |D|

2

2
+ ψk b |D|

2
− a |C|

2

2

)

so that J k(·) admits the representation

J k(v) =

∫

Ω

[
1

2
mk |ε(v)|

2
+ (A+ + ψkA−) · ε(v) +

1

2
Bk

]
dx. (R)

Next, define a linear continuous operator L : H1
0 (Ω;R

n) → L2(Ω;Rn×n
sym ) as

Lv = ε(v), v ∈ H1
0 (Ω;R

n),

with transpose L∗ : L2(Ω;Rn×n
sym ) → H−1(Ω;Rn)

〈
L∗p, v

〉
H1

0
(Ω;Rn)

=

∫

Ω

p · ε(v) dx, ∀p ∈ L2(Ω;Rn×n
sym ), ∀v ∈ H1

0 (Ω;R
n).
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and kernel

KerL∗ =
{
p ∈ L2(Ω;Rn×n

sym ) :

∫

Ω

p · ε(v) dx = 0
}
.

Finally, define

Ik(q) :=

∫

Ω

[ 1

2mk

∣∣q − (A+ + ψkA−)
∣∣2− 1

2
Bk

]
dx, q ∈ L2(Ω;Rn×n

sym ). (2.4)

Now we are in a position to formulate the dual problem (P k)⋆ which can be
stated as follows

inf
{∫

Ω

Ik(q) dx : q ∈ KerL∗
}
:= βk. (P k)⋆

According to the Fenchel theorem (see Theorem 3.2, p. 38, Aubin, 1993) we get

J k(v) ≥ J k(uk) = αk = −βk = −Ik(pk) ≥ −Ik(q),

∀ v ∈ H1
0 (Ω;R

n), ∀ q ∈ KerL∗, (2.5)

where

pk = mkε(uk) +A+ + ψkA− ∈ KerL∗ (2.6)

is a solution of the dual problem (P k)⋆. Since pk ∈ KerL∗,
∫

Ω

pk · ε(v) dx = 0, ∀ v ∈ H1
0 (Ω;R

n), (2.7)

so, in particular,
∫

Ω

pk · ε(uk) dx =

∫

Ω

[
mk

∣∣ε(uk)
∣∣2 + (A+ + ψkA−) · ε(uk)

]
dx = 0. (2.8)

In view of αk = −Ik(pk) and (2.8) we get the following representations

αk = 1
2

∫

Ω

[
−mk

∣∣ε(uk)
∣∣2+Bk

]
dx = 1

2

∫

Ω

[
(A++ψkA−) ·ε(uk)+Bk

]
dx. (2.9)

Analogously, from (2.6), (2.8) and (2.9) there follows

∫

Ω

[
1

mk

∣∣pk
∣∣2 − 1

mk
(A+ + ψkA−) · pk

]
dx = 0.
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Therefore

αk = − 1
2

∫

Ω

[
−

1

mk

∣∣pk
∣∣2 + 1

mk

∣∣A+ + ψkA−
∣∣2 − Bk

]
dx =

= 1
2

∫

Ω

[
1

mk
(A+ + ψkA−) · pk −

1

mk

∣∣A+ + ψkA−
∣∣2 + Bk

]
dx (2.10)

and we are led to the equality

∫

Ω

[
mk

∣∣ε(uk)
∣∣2 + 1

mk

∣∣pk
∣∣2
]
dx =

∫

Ω

[
1

mk

∣∣A+ + ψkA−
∣∣2
]
dx. (2.11)

Since χk
a +χk

b = 1, (ψk)2 = 1 and 1
mk = 1

2 (
1
a
+ 1

b
) + 1

2 (
1
b
− 1

a
)ψk, letting k → ∞

yields

lim
k→∞

∫

Ω

[
mk

∣∣ε(uk)
∣∣2 + 1

mk

∣∣pk
∣∣2
]
dx

= 1
2

∫

Ω

(
a |C|

2
+ b |D|

2
)
dx+ 1

2

∫

Ω

ψ
(
b |D|

2
− a |C|

2
)
dx =

∫

Ω

B dx,





(2.12)

where B = a|C|2+b|D|2

2 + b|D|2−a|C|2

2 ψ. Let us divide Ω into two disjoint sets:

Ω = Ω0 ∪ (Ω \ Ω0)

where

Ω0 = {x ∈ Ω: a(x) = b(x)}.
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From (2.6), (2.9) and (2.10) we get the representations of αk:

αk = 1
2

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|
2
− |D|

2
)

2(b− a)

− ψk ab |C −D|
2

2(b− a)

]
dx

+ 1
2

∫

Ω0

[
−a

∣∣ε(uk)
∣∣2 + a(|C|

2
+ |D|

2
)

2
+ ψk a(|D|

2
− |C|

2
)

2

]
dx

+ 1
2

∫

Ω0

pk · ε(uk)dx

= 1
2

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|2 − |D|2)

2(b− a)

− ψk ab |C −D|
2

2(b− a)

]
dx

+ 1
2

∫

Ω0

1

a

∣∣pk
∣∣2 dx− 1

2

∫

Ω0

pk · ε(uk)dx. (2.13)

3. Weak convergence in L
1(Ω)

Lemma 1 Let Ω ⊂ R
n be a bounded domain in R

n with Lipschitz continuous
boundary ∂Ω. Then

pk · ε(uk) → p · ε(u) weakly in L1(Ω). (3.1)

Proof. Extend each function uk ∈ H1
0 (Ω;R

n) to all of Rn by setting it equal
to zero on R

n \ Ω. By regularity of the boundary ∂Ω all of these extensions
are elements of H1(Rn;Rn). For an arbitrary ϕ ∈ C∞(Rn) we have ϕuk ∈
H1(Rn;Rn) and ϕuk

∣∣
Ω
∈ H1

0 (Ω;R
n). We claim that

∫

Rn

ϕpk · ε(uk) dx→

∫

Rn

ϕp · ε(u) dx, (3.2)

for any ϕ ∈ C∞(Rn). Indeed, since ε(ϕuk) = ϕε(uk) + uk ⊗∇ϕ, there follows
∫

Rn

ϕpk · ε(uk) dx =

∫

Rn

pk · ε(ϕuk) dx−

∫

Rn

pk · (uk ⊗∇ϕ) dx =

= −

∫

Rn

pk · (uk ⊗∇ϕ) dx→ −

∫

Rn

p · (u⊗∇ϕ) dx =

∫

Rn

ϕp · ε(u) dx,
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where we have used (2.7) and the strong convergence uk → u in L2(Ω;Rn) (valid
due to the Rellich compactness theorem).
Further, the sequence {pk · ε(uk)} is uniformly bounded in L1(Ω) because {pk}
and {ε(uk)} so are in L2(Ω). By Chacon’s biting lemma (Pedregal, 1997) it fol-
lows that there exist a subsequence of {pk ·ε(uk)}, not relabeled, a nonincreasing
sequence of measurable sets Ωn ⊂ Ω, Ωn+1 ⊂ Ωn, |Ωn| ց 0 and f ∈ L1(Ω) such
that

pk · ε(uk) → f weakly in L1(Ω \ Ωn) (3.3)

for all n. It means that {pk ·ε(uk)} converges in the biting sense to f (Pedregal,
1997).

Now we assert that the biting limit f coincides with p · ε(u), i.e. f = p · ε(u)
a.e. in Ω. To show this observe that from the biting argument (3.3) and (3.2)
it follows that for any ϕ ∈ C∞(Rn) we get

∫

Ω\Ωn

ϕp · ε(u) dx =

∫

Ω\Ωn

ϕf dx, (3.4)

for any n. Hence p · ε(u) = f a.e. in Ω \ Ωn for each n. Since |Ωn| ց 0 as
n→ ∞, the equality p·ε(u) = f must hold a.e. in Ω. Thus, the assertion follows.

Recall that pk · ε(uk) = mk
∣∣ε(uk)

∣∣2 +
(
A+ + ψkA−) · ε(uk). Therefore, one

can deduce the existence of a constant C ≥ 0 such that

pk · ε(uk) + C ≥ 0 a.e in Ω.

Obviously, pk ·ε(uk)+C converges in the biting sense to p ·ε(u)+C. According
to Lemma 6.9 (p.109, Pedregal, 1997) to prove its weak convergence in L1(Ω)
it suffices to show that

lim sup
k→∞

∫

Ω

(
pk · ε(uk) + C

)
dx ≤

∫

Ω

(
p · ε(u) + C

)
dx. (3.5)

Our task now is to establish the foregoing inequality. For this purpose notice
that (3.2) can be easily extend to the convergence

∫

Rn

ϕpk · ε(uk) dx→

∫

Rn

ϕp · ε(u) dx, (3.6)

which is valid for any ϕ ∈ Cc(R
n), where Cc(R

n) is the space of continuous
functions on R

n with compact support. Thus, µk := (pk · ε(uk) + C)dx and
µ := (p · ε(u) + C)dx can be treated as positive Radon measures on R

n for
which there holds

lim
k→∞

∫

Rn

ϕdµk =

∫

Rn

ϕdµ, ∀ϕ ∈ Cc(R
n).
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But Theorem 1( p. 54, Evans and Gariepy, 1992) asserts that this condition is
equivalent to the following one

lim
k→∞

µk(B) = µ(B) for each bounded Borel set B ⊂ R
n with µ(∂B) = 0.

(3.7)

Now we are in a position to establish (3.5). For this purpose fix ǫ > 0 and
choose 0 < δ < ǫ with the property that for any measurable ω ⊂ Ω with |ω| < δ

there holds
∫

ω

p · ε(u) dx < ǫ.

In the biting convergence take n0 large enough to fulfill |Ωn0
| < δ

2 . By the

measurability of Ωn0
there exists an open Ω̃n0

⊃ Ωn0
with

∣∣∣Ω̃n0

∣∣∣ < δ. Vitali

covering theorem ensures the representation Ω̃n0
= Ω̃′

n0
∪ Ω̃′′

n0
where

∣∣∣Ω̃′′
n0

∣∣∣ = 0

and Ω̃′
n0

stands for the union of a countable collection of disjoint closed balls in

Ω̃n0
. Therefore

∣∣∣∂Ω̃′
n0

∣∣∣ = 0 and consequently µ(∂Ω̃′
n0
) = 0. From this we have

∫

Ω

(
pk · ε(uk) + C

)
dx =

∫

Ω\Ωn0

(
pk · ε(uk) + C

)
dx+

∫

Ωn0

(
pk · ε(uk) + C

)
dx

≤

∫

Ω\Ωn0

(
pk · ε(uk) + C

)
dx+

∫

Ω̃n0

(
pk · ε(uk) + C

)
dx

=

∫

Ω\Ωn0

(
pk · ε(uk) + C

)
dx+ µk(Ω̃′

n0
)

which, owing to (3.7), by passing to the limit as k → ∞ yields

lim sup
k→∞

∫

Ω

(
pk · ε(uk) + C

)
dx ≤

∫

Ω\Ωn0

(
p · ε(u) + C

)
dx+ µ(Ω̃′

n0
)

≤

∫

Ω

(
p · ε(u) + C

)
dx+ ǫ(1 + C),

because
∣∣∣Ω̃′

n0

∣∣∣ < δ < ǫ. Since ǫ > 0 was chosen arbitrarily, (3.5) follows. This

completes the proof of Lemma 1.

4. Explicit formulas for infimum in the nonconvex prob-

lem

In this section we carry out calculations leading to the explicit expression of the
infimum of (P). We finally arrive at Theorem 1 formulated at the end of the
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section. Theorem 1 contains the main result of the paper.
The weak lower semicontinuity of convex functionals, the upper semiconti-

nuity of concave functionals and Lemma 1 of Section 3 yield

lim inf
k→∞

1
2

∫

Ω0

1

a

∣∣pk
∣∣2 dx ≥ 1

2

∫

Ω0

1

a
|p|

2
dx, (4.1)

lim sup
k→∞

1
2

∫

Ω0

[
−a

∣∣ε(uk)
∣∣2 + Bk

]
dx ≤ 1

2

∫

Ω0

[
−a |ε(u)|2 + B

]
dx, (4.2)

lim
k→∞

1
2

∫

Ω0

pk · ε(uk)dx = 1
2

∫

Ω0

p · ε(u)dx. (4.3)

Now we show that

lim
k→∞

1
2

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|2 − |D|2)

2(b− a)

−ψk ab |C −D|
2

2(b− a)

]
dx

= 1
2

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|
2
− |D|

2
)

2(b− a)

−ψ
ab |C −D|

2

2(b− a)

]
dx. (4.4)

This is not trivial because the functions ab(C−D)
b−a

and bD−aC
b−a

are not assumed
to belong to L2(Ω \Ω0;R

n×n
sym ). To overcome this disadvantage let us recall (see

(2.13)) that Ω \ Ω0 is a set of a finite Lebesgue measure where

ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|
2
− |D|

2
)

2(b− a)
− ψk ab |C −D|

2

2(b− a)

= A+
· ε(uk) + A−

· ψkε(uk) + Bk.

Thus, for any ε > 0 there exist ωε ⊂ Ω \ Ω0 and δ > 0 such that |ωε| < ε and
for each x ∈ (Ω \ Ω0) \ ωε one has |a(x) − b(x)| ≥ δ. Hence

C −D

b− a
∈ L∞

(
(Ω \ Ω0) \ ωε;R

n×n
sym

)
⊂ L2

(
(Ω \ Ω0) \ ωε;R

n×n
sym

)
(4.5)

and

∣∣∣
∫

ωε

[ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|2 − |D|2)

2(b− a)

− ψk ab |C −D|
2

2(b− a)

]
dx

∣∣∣ ≤ const |ωε|
1
2 ≤ const ε

1
2 .
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This allows to conclude that

lim
k→∞

∫

(Ω\Ω0)\ωε

[ab(C −D)

b− a
· ε(uk) +

bD − aC

b− a
· pk +

ab(|C|2 − |D|2)

2(b− a)

−ψk ab |C −D|
2

2(b− a)

]
dx

=

∫

(Ω\Ω0)\ωε

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|
2
− |D|

2
)

2(b− a)

−ψ
ab |C −D|2

2(b− a)

]
dx

and due to the fact that ε > 0 was chosen arbitrarily we easily arrive at (4.4),
as desired.
Now, for v ∈ H1

0 (Ω;R
n) and q ∈ KerL∗ let us set

Ĩ(v, q) :=
∫

Ω\Ω0

[ab(C −D)

b− a
·ε(v)+

bD − aC

b− a
·q+

ab(|C|
2
− |D|

2
)

2(b− a)
−ψ

ab |C −D|
2

2(b− a)

]
dx.

(4.6)

Since pk ∈ KerL∗, from (2.13) and (4.1)-(4.4) there follows

α ≤ 1
2 Ĩ(u, p) +

1
2

∫

Ω0

[
−a |ε(u)|2

]
dx+ 1

2

∫

Ω0

B dx+ 1
2

∫

Ω0

p · ε(u)dx

and

α ≥ 1
2 Ĩ(u, p)+

1
2

∫

Ω0

[1
a
|p|

2
−

1

a

(∣∣A+
∣∣2+

∣∣A−
∣∣2+2ψA+

·A−
)]
dx+ 1

2

∫

Ω0

B dx.

Combining the above inequalities leads to

1
2

∫

Ω0

[
−a |ε(u)|2

]
dx+

∫

Ω0

p · ε(u)dx ≥

≥ α+ 1
2

∫

Ω0

p · ε(u)dx− Ĩ(u, p)−

∫

Ω0

B dx ≥

≥ 1
2

∫

Ω0

[1
a
|p|

2
−

1

a

(∣∣A+
∣∣2 +

∣∣A−
∣∣2 + 2ψA+

·A−
)]
dx. (4.7)
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On the other hand, from p = a ε(u) +A+ + ψA− in Ω0 there follows

1
2

∫

Ω0

[1
a
|p|

2
−

1

a

(∣∣A+
∣∣2 +

∣∣A−
∣∣2 + 2ψA+

·A−
)]
dx =

= 1
2

∫

Ω0

[
−a |ε(u)|

2
]
dx +

∫

Ω0

p · ε(u)dx− 2

∫

Ω0

1

a
χaχb

∣∣A−
∣∣2 dx.

Here we have used the fact that ψ2 − 1 = −4χaχb. Thus, in view of (4.7) we
get

0 ≥ α− 3
2

∫

Ω0

p·ε(u)dx+

∫

Ω0

a |ε(u)|
2
dx−Ĩ(u, p)−

∫

Ω0

B dx ≥ −2

∫

Ω0

1

a
χaχb

∣∣A−
∣∣2 dx.

Since
∫

Ω0

p · ε(u)dx =

∫

Ω0

[
a |ε(u)|

2
+ (A+ + ψA−) · ε(u)

]
dx,

from the fact that A− = aD−C
2 in Ω0, we have

0 ≥ α−

∫

Ω0

[
(A+ + ψA−) · ε(u) + B

]
dx− Ĩ(u, p)− 1

2

∫

Ω0

p · ε(u)dx

≥ − 1
2

∫

Ω0

χaχb a |C −D|
2
dx. (4.8)

Consequently, we are allowed to conclude that for some θ ∈ [0, 1],

α =

∫

Ω0

[
(A+ + ψA−) · ε(u) + B

]
dx+ 1

2

∫

Ω0

p · ε(u)dx

+

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|
2
− |D|

2
)

2(b− a)

− ψ
ab |C −D|2

2(b− a)

]
dx − θ

2

∫

Ω0

χaχb a |C −D|
2
dx.

In view of
∫

Ω0

(A+ + ψA−) · ε(u)dx =

∫

Ω0

[
−a |ε(u)|2

]
dx+

∫

Ω0

p · ε(u)dx,

we can summarize the above considerations by formulating the main result of
the paper: the explicit formulas for the infimum in the nonconvex minimization
problem.
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Theorem 1 Let u ∈ H1
0 (Ω;R

n) be the weak limit of {uk} (a minimizing se-
quence for (P )) and let p ∈ L2(Ω;Rn×n

sym ) the weak limit of {pk} (the sequence

of solutions of the dual problems (P k)∗). Then there exists θ ∈ [0, 1] such that
α = inf(J ) can be expressed as

α =

∫

Ω0

[(a(C +D)

2
+ ψ

a(D − C)

2

)
· ε(u) +

a(|C|
2
+ |D|

2
)

2

+ ψ
a(|D|2 − |C|2)

2

]
dx+ 1

2

∫

Ω0

p · ε(u)dx

+

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|
2
− |D|

2
)

2(b− a)

− ψ
ab |C −D|

2

2(b− a)

]
dx − θ

2

∫

Ω0

χaχb a |C −D|
2
dx =

=

∫

Ω0

[
−a |ε(u)|2 +

a(|C|
2
+ |D|

2
)

2
+ ψ

a(|D|
2
− |C|

2
)

2

]
dx+ 3

2

∫

Ω0

p · ε(u)dx

+

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|2 − |D|2)

2(b− a)

− ψ
ab |C −D|

2

2(b− a)

]
dx− θ

2

∫

Ω0

χaχb a |C −D|
2
dx. (4.9)

Remark 1 Theorem 1 shows that α = inf(J ) admits the representation involv-
ing u, p, χa, χb, θ - the quantities which are determined by applying procedures
well developed in Convex Analysis and Optimization. Having obtained α it is
possible, following Naniewicz (2001), to introduce the relaxation term

R(u, χa, χb) :=

∫

Ω

[
χa

1
2 |ε(u) + C|2 + χb

1
2 |ε(u) +D|2

]
dx− α.

The relaxation term R gathers information about oscillatory properties of the
minimizing sequence {uk}. When χa = 1, then χb = 0 (and vice versa) so in
this case we have R ≡ 0 and we get the classical solution of a convex problem.
Therefore, convex problem is a special case of a nonconvex one.

5. Interrelations with Young measures

We will now consider the relation between Young measures associated with
minimizing for J sequence {uk} and inf J = α. We will show that the structure
of the sequence {uk} allows the infimum to be fully expressed by Young measures
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associated with {uk}. We will also establish some relations between Young
measures and limits of the sequences of characteristic functions related to the
phases of the integrand.

Before formulating next theorem it will be convenient to introduce some
notation. Denote by ω+

0 ⊂ Ω the set of weak convergence of {ψk} = {χk
b − χk

a}
with weak limit equal to +1 and by ω−

0 ⊂ Ω the set of weak convergence of {ψk}
with weak limit equal to −1. As Theorem 4 of Naniewicz (2001) guarantees
only the existence of the sequences {χk

b} and {χk
a} related to the phases of the

integrand, the sets ω±
0 depend on the choice of sequence {ψk}. Let ω0 : =

ω+
0 ∪ ω−

0 .
Recall that the functional to be minimized is of the form

J (u) =

∫

Ω

min
{

1
2a |ε(u) + C|

2
, 12b |ε(u) +D|

2}
dx, u ∈ H1

0 (Ω;R
n).

Set

h(x, λ) = min
{
1
2a(x) |λ+ C(x)|

2
, 1

2b(x) |λ+D(x)|
2}
, λ ∈ R

n×n
sym , x ∈ Ω.

Theorem 2 Let {uk} be the minimizing sequence for (P ) and let ν = {νx}x∈Ω

be the parametrized Young measure associated with {uk}. Then

α =

∫

Ω

∫

Rn×n

h(x, λ) dνx(λ) dx =

=

∫

Ω\Ω0

[ab(C −D)

b− a
· ε(u) +

bD − aC

b− a
· p+

ab(|C|
2
− |D|

2
)

2(b− a)

− ψ
ab |C −D|

2

2(b− a)

]
dx

+

∫

Ω0

[
−

∫

Rn×n

a|λ|2 dνx(λ) +
a(|C|2 + |D|2)

2
+ ψ

a(|D|2 − |C|2)

2

]
dx

+ 3
2

∫

Ω0

p · ε(u)dx. (5.1)

Moreover, we have

νx = δε(u(x)) a.e. in ω0. (5.2)

Proof. First, by making use of (2.12), (2.13), (4.4) and Lemma 1 we show that
the weak limit of {hk1}, where

hk1 = a(x)
∣∣ε(uk(x))

∣∣2 , x ∈ Ω0,

is
∫

Rn×n

a |λ|2 dνx(λ). Indeed, {pk·ε(uk)} as weakly convergent sequence in L1(Ω)

is equiintegrable according to the Dunford-Pettis criterion of weak compactness
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in L1(Ω). Since pk · ε(uk) = mk
∣∣ε(uk)

∣∣2 +
(
A+ + ψkA−) · ε(uk), it is easy to

deduce that {mk
∣∣ε(uk)

∣∣2} is equiintegrable as well (and so is {hk1}). Thus, one
can suppose that {hk1} converges weakly in L1(Ω) (by passing to a subsequence,
if necessary). So by Theorem 6.2 p. 97 (Pedregal, 1997), its weak limit is∫

Rn×n

a |λ|2 dνx(λ), as desired.

Now, from

h
(
x, ε(uk(x))

)
≤

1

2
mk

∣∣ε(uk)
∣∣2 + (A+ + ψkA−) · ε(uk) +

1

2
Bk

we conclude that the weak limit of {h
(
x, ε(uk(x))

)
} coincides with the right

hand side of (5.1) (see Theorem 6.2, p. 97, Pedregal, 1997 ).
To show (5.2) it is enough to establish the strong convergence of {ε(uk)} in
L2(ω0;R

n×n
sym ) (see Proposition 6.12, p. 111, Pedregal, 1997). The sequence

{ψk} = {χk
b − χk

a} takes its values in {−1, 1}. Thus the upper Kuratowski
limit of the sequence of singletons {ψk(x)} (i.e. the set of limit points of this
sequence) is set {−1, 1}. By the Balder theorem (see Valadier, 1994) it follows
that ψk → 1 strongly in L1(ω+

0 ) and ψk → −1 strongly in L1(ω−
0 ). Therefore,

we can suppose that ψk → 1 a.e. in ω+
0 (ψk → −1 a.e. in ω−

0 ) (passing to

a subsequence, if necessary). Further, the equiintegrability of {mk
∣∣ε(uk)

∣∣2}
implies that {

∣∣ε(uk)
∣∣2} is also equiintegrable. By Lemma 1 we have

∫

ω
+

0

pk · ε(uk) dx→

∫

ω
+

0

p · ε(u) dx =

∫

ω
+

0

b |ε(u)|
2
dx+

∫

ω
+

0

(A+ +A−) · ε(u) dx.

On the other hand,
∫

ω
+

0

pk·ε(uk) dx =

∫

ω
+

0

b
∣∣ε(uk)

∣∣2 dx+
∫

ω
−

0k

(a−b)
∣∣ε(uk)

∣∣2 dx+
∫

ω
+

0

(A++ψkA−)·ε(uk) dx,

where ω−
0k = {x ∈ ω+

0 : ψk(x) = −1}. Thus, taking into account that
∫

ω
+

0

(A+ + ψkA−) · ε(uk) dx→

∫

ω
+

0

(A+ +A−) · ε(u) dx

and
∫

ω
−

0k

(a− b)
∣∣ε(uk)

∣∣2 dx→ 0

(a consequence of the equiintegrability of {
∣∣ε(uk)

∣∣2} and
∣∣ω−

0k

∣∣ → 0), we are led
to

∫

ω
+

0

b
∣∣ε(uk)

∣∣2 dx→

∫

ω
+

0

b |ε(u)|
2
dx.
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Since, simultaneously, ε(uk) ⇀ ε(u) in L2(ω+
0 ;R

n×n
sym ), the desired strong con-

vergence results. Analogous reasoning holds for ω−
0 . The proof is complete.

Corollary 1 The following formula is true

θ =





2

∫

Ω0\ω0

∫
Rn

a |λ|
2
dνx(λ) dx −

∫

Ω0\ω0

a |ε(u)|
2
dx

∫

Ω0\ω0

χaχb a |C −D|
2
dx

if

∫

Ω0\ω0

χaχb a |C −D|
2
dx > 0

0 otherwise.

From (4.9) and (5.1) it follows that

lim
k→∞

∫

Ω0

a
∣∣ε(uk)

∣∣2 dx =

∫

Ω0

∫

Rn

a |λ|
2
dνx(λ) dx =

∫

Ω0

a |ε(u)|
2
dx+ θ

2

∫

Ω0

χaχb a |C −D|
2
dx. (5.3)

This, combined with (5.2) and the fact that χa(x)χb(x) = 0, x ∈ ω0, implies
the assertion.

Remark 2 Thanks to Theorem 2 α = inf(J ) can be represented by the for-
mulas in which the associated parametrized Young measures {νx}x∈Ω play the
fundamental role. Moreover, it is possible to compute an explicit form of the
(nonhomogeneous) Young measure at least in some special subset of Ω, that
is, in ω0. Further, its Corollary shows that in some regions of Ω it is possible
to determine the formula for the value of θ ∈ [0, 1] (see Theorem 1, equation
4.9) in terms of the Young measures {νx}x∈(Ω0\ω0) and {χa(x), χb(x)}x∈(Ω0\ω0).
Unfortunately, the technique based on parametrized Young measures seems to be
more difficult to be implemented in practice. Therefore, for the problem under
consideration, the presented approach can be regarded as the efficient alternative
for the parameterized Young measure technique.
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