Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X, Y be real Banach spaces. Let Z be a Banach space partially ordered by a pointed closed convex cone K. Let f(·) be a locally uniformly approximate convex function mapping an open subset ΩY ⊂ Y into Z. Let ΩX ⊂ X be an open subset. Let σ(·) be a differentiable mapping of ΩX into ΩY such that the differentials of σ/x are locally uniformly continuous function of x. Then f(σ(·)) mapping X into Z is also a locally uniformly approximate convex function. Therefore, in the case of Z = Rn the composed function f(σ(·)) is Frechet differentiable on a dense Gδ-set, provided X is an Asplund space, and Gateaux differentiable on a dense Gδ-set, provided X is separable. As a consequence, we obtain that in the case of Z = Rn a locally uniformly approximate convex function defined on a C1,uE -manifold is Frechet differentiable on a dense Gδ-set, provided E is an Asplund space, and Gateaux differentiable on a dense Gδ-set, provided E is separable.
Czasopismo
Rocznik
Tom
Strony
443--462
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Institute of Mathematics of the Polish Academy of Sciences Śniadeckich 8, 00-956 Warszawa, rolewicz@impan.gov.pl
Bibliografia
- Asplund, E. (1966) Farthest points in reflexive locally uniformly rotund Banach spaces. Israel Jour. Math., 4, 213 - 216.
- Asplund, E. (1968) Fréchet differentiability of convex functions. Acta Math., 121, 31 - 47.
- Ioffe, A.D. (1984) Approximate subdifferentials and applications I. Trans. AMS, 281, 389 - 416.
- Ioffe, A.D. (1986) Approximate subdifferentials and applications II. Mathematika 33, 111 - 128.
- Ioffe, A.D. (1989) Approximate subdifferentials and applications III. Mathematika 36, 1 - 38.
- Ioffe, A.D. (1990) Proximal analysis and approximate subdifferentials. J. London Math. Soc. 41, 175 - 192.
- Ioffe, A.D. (2000) Metric regularity and subdifferential calculus (in Russian). Usp. Matem. Nauk 55(3), 104 - 162.
- Jahn, J. (1986) Mathematical Vector Optimization in Partially Ordered Linear Spaces. Peter Lang, Frankfurt.
- Jahn, J. (2004) Vector Optimization. Springer Verlag, Berlin-Heidelberg-New York.
- Jourani, A. (1996) Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions. Control and Cybernetics 25, 721 - 737.
- Lang, S. (1962) Introduction to Differentiable Manifolds. Interscience Publishers (division of John Wiley & Sons) New York, London.
- Luc,D.T., Ngai,H.V., Théra,M. (2000) On ε-convexity and ε-monotonicity. In: A.Ioffe, S.Reich and I. Shafrir, eds. Calculus of Variation and Differential Equations. Research Notes in Mathematics Series 410, Chapman & Hall, 82 -100.
- Luc,D.T., Ngai,H.V., Théra,M. (2000b) Approximate convex functions. Jour. Nonlinear and Convex Anal. 1, 155 - 176.
- Mazur, S. (1933) Über konvexe Mengen in linearen normierten Räumen. Stud. Math., 4, 70 - 84.
- Michael, E. (1954) Local properties of topological spaces. Duke Math. Jour. 21, 163 - 174.
- Mordukhovich, B.S. (1976) Maximum principle in the optimal control problems with non-smooth constraints (in Russian). Prikl. Mat. Meh. 40, 1014 -1024.
- Mordukhovich, B.S. (1980) Metric approximations and necessary optima lity conditions for general classes of nonsmooth extremal problems (in Russian). Soviet Math. Doklady. 254, 1072 - 1076. In English version 22, 526 - 530.
- Mordukhovich, B.S. (1988) Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow.
- Mordukhovich, B.S. (2005a) Variational Analysis and Generalized Differentiation. Vol.1. Basic Theory. Springer Verlag, Grundlehren der Mathematischen Wissenschaften 330.
- Mordukhovich, B.S. (2005b) Variational Analysis and Generalized Differentiation. Vol.2. Applications. Springer Verlag, Grundlehren der Mathematischen Wissenschaften 331.
- Pallaschke, D., Rolewicz, S. (1997) Foundation of Mathematical Optimization. Mathematics and its Applications 388. Kluwer Academic Publishers, Dordrecht-Boston-London.
- Phelps, R.R. (1989) Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364, Springer-Verlag.
- Preiss,D., Zajíček, L. (1984) Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat. di Palermo, ser II, 3, 219 - 223.
- Rockafellar, R.T. (1980) Generalized directional derivatives and subgradient of nonconvex functions. Can. Jour. Math. 32, 257 - 280.
- Rolewicz, S. (1999) On α(·)-monotone multifunction and differentiability of γ-paraconvex functions. Stud. Math. 133, 29 - 37.
- Rolewicz, S. (2000) On α(·)-paraconvex and strongly α(·)-paraconvex functions. Control and Cybernetics 29, 367 - 377.
- Rolewicz, S. (2001) On the coincidence of some subdifferentials in the class of α(·) paraconvex functions. Optimization 50, 353 - 360.
- Rolewicz, S. (2001b) On uniformly approximate convex and strongly α(·)- paraconvex functions. Control and Cybernetics 30, 323 - 330.
- Rolewicz, S. (2002) α(·)-monotone multifunctions and differentiability of strongly α(·)-araconvex functions. Control and Cybernetics 31, 601 -619.
- Rolewicz, S. (2005a) On differentiability of strongly α(·)-paraconvex functions in non-separable Asplund spaces. Studia Math. 167, 235 - 244.
- Rolewicz, S. (2005b) Paraconvex analysis. Control and Cybernetics, 34, 951- 965.
- Rolewicz, S. (2006) An extension of Mazur Theorem about Gateaux differentiability. Studia Math. 172, 243 - 248.
- Rolewicz, S. (2007) Paraconvex Analysis on C1,u E -manifolds. Optimization 56, 49 - 60.
- Rolewicz, S. (2009) How to define „convex functions” on differentiable manifolds. Discussiones Mathematicae, Differential Inclusions, Control and Optimization 29, 7 - 17.
- Rolewicz, S. (2010) Differentiability of strongly paraconvex vector-valued functions. Functiones et Approximatio 44, 273-277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0054