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Abstract: Let X,Y be real Banach spaces. Let Z be a Banach
space partially ordered by a pointed closed convex cone K. Let f(·)
be a locally uniformly approximate convex function mapping an open
subset ΩY ⊂ Y into Z. Let ΩX ⊂ X be an open subset. Let σ(·) be
a differentiable mapping of ΩX into ΩY such that the differentials
of σ

∣

∣

x
are locally uniformly continuous function of x. Then f(σ(·))

mapping X into Z is also a locally uniformly approximate convex
function. Therefore, in the case of Z = Rn the composed function
f(σ(·)) is Fréchet differentiable on a dense Gδ-set, provided X is
an Asplund space, and Gateaux differentiable on a dense Gδ-set,
provided X is separable. As a consequence, we obtain that in the
case of Z = Rn a locally uniformly approximate convex function
defined on a C1,u

E
-manifold is Fréchet differentiable on a dense Gδ-

set, provided E is an Asplund space, and Gateaux differentiable on
a dense Gδ-set, provided E is separable.

Keywords: vector valued functions, strongly α(·)-K-paracon-
vexity, differentiable manifolds, Gateaux and Fréchet differentiabil-
ity.

1. Introduction

Let (X, ‖.‖) be a real Banach space. Let Z be a Banach space partially ordered
by a pointed closed convex cone K. Let f(·) be a continuous function defined
on an open convex subset Ω ⊂ X. We say that the function f(·) is K-convex if,
for 0 ≤ t ≤ 1,

f
(

tx+ (1− t)y
)

≤K tf(x) + (1− t)f(y)

(in other words

tf(x) + (1− t)f(y) ∈ f
(

tx+ (1− t)y
)

+K)
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for all x, y ∈ Ω and for t, 0 ≤ t ≤ 1 (see, for example, Jahn, 1986, 2004,
Pallaschke and Rolewicz, 1997).

In the case of Z = R and K = {z ∈ R : z ≥ 0} we obtain the classical
definition of a convex real-valued function.

We recall that a set B ⊂ Ω of second Baire category is called residual if its
complement Ω \ B is of the first Baire category (i.e. it is a countable union
of nowhere dense sets). Mazur (1933) proved that for each continuous convex
real-valued function f(·) there is a residual subset AG such that on the set AG

the function f is Gateaux differentiable. Asplund (1968) showed that if in the
dual space X∗ there exists an equivalent locally uniformly rotund norm, then
for each continuous convex real-valued function f(·) there is a residual subset
AF such that on the set AF the function f is Fréchet differentiable. The spaces
X such that for the dual space X∗ there exists an equivalent locally uniformly
rotund norm are now called Asplund spaces. It can be shown that each reflexive
space and spaces having separable duals are Asplund spaces. Even more, a space
X is an Asplund space if and only if each its separable subspace X0 ⊂ X has a
separable dual (Phelps, 1989).

Basing on a uniformization of the notion of approximate subgradient intro-
duced and developed by Ioffe and Mordukhovich (see Ioffe, 1984, 1986, 1989,
1990, 2000; Mordukhovich, 1976, 1980, 1988, 2005a, 2005b) and adapting the
method of Preiss and Zajíček (1984) the author extended the Mazur and As-
plund results on larger (than convex) classes of function called strongly α(·)-
paraconvex functions (Rolewicz, 1999, 2001a, 2001b, 2002, 2005a, 2005b, 2006).
We say that a function f(·) is uniformly approximate convex if there is a function
α(·) (satisfying certain conditions) such that f(·) is a strongly α(·)-paraconvex
function.

In the papers by Rolewicz (2007, 2009) it was shown that if σ is a mapping of
a convex open set into a convex open set, such that the differentials ∗ of σ, ∂σ

∣

∣

x
,

are locally uniformly continuous in the norm topology, then the composition
of a locally uniformly approximate real-valued convex function f(·) with σ(·),
f(σ(·)), is also a locally uniformly approximate real-valued convex function.
As a consequence we get that f(σ(·)) is Fréchet differentiable on a residual
set, provided X is an Asplund space, and it is Gateaux differentiable on a
residual set, provided X is a separable space. As a consequence we obtain
that a locally uniformly approximate convex real-valued functions defined on
C

1,u
E

-manifolds over a real Banach space E are Fréchet differentiable on a dense
Gδ-set, provided E is an Asplund space, and are Gateaux differentiable on a
dense Gδ-set, provided E is separable.

In this paper those results are extended on vector-valued functions having
values in Rn.

∗We shall say briefly differentials, since under assumptions of continuity each Gateaux

differential is also a Fréchet differential.
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2. Uniformly approximate convex vector-valued functions

Let k belong to the relative interior of K, k ∈ IntrK.
Let α(·) be a nondecreasing function mapping the interval [0,+∞) into the

interval [0,+∞] such that

lim
t↓0

α(t)

t
= 0. (2.1)

Let a continuous function f(·) be defined on an open convex subset Ω ⊂
X and having values in Y . We say that the function f(·) is strongly α(·)-k-
paraconvex if there is C ≥ 0 and such that for all x, y ∈ Ω and 0 ≤ t ≤ 1 we
have

f
(

tx+(1− t)y
)

≤K tf(x)+(1− t)f(y)+Cmin[t, (1− t)]α(‖x−y‖X)k. (2.2)

We say that a continuous function f(·) defined on an open convex subset
Ω ⊂ X and having values in Z is strongly α(·)-K-paraconvex if it is strongly
α(·)-k-paraconvex for all k ∈ IntrK.

The set of all strongly α(·)-K-paraconvex functions is denoted αPCK(Ω).

proposition 2.1 (Rolewicz, 2010). Let X,Z be Banach spaces. Let K ⊂ Z be
a convex pointed cone. Let k0 ∈ IntrK. Then each strongly α(·)-k0-paraconvex
function f(·) mapping a convex set Q ⊂ X into Z is strongly α(·)-K-paraconvex.

The following Proposition is obvious

proposition 2.2 (Rolewicz, 2010). Let X be a real Banach space. Let K ⊂ R
n

be a closed convex pointed cone. Let a function f(·) mapping a convex set
Q ⊂ X into R

n be strongly α(·)-K-paraconvex . Then there are n linearly
independent functionals {ℓ1, ℓ2, ..., ℓn} defined on R

n such that the functions
{ℓ1(f(·)), ℓ2(f(·)), ..., ℓn(f(·)} are strongly α(·)-K-paraconvex.

Using Proposition 2.2 and results about differentiability of uniformly approx-
imate convex real-valued functions (Rolewicz, 1999, 2002, 2005a, 2005b, 2006)
we can obtain

Theorem 2.1 (Rolewicz, 2010). Let ΩX be an open convex set in a real Banach
space (X, ‖ · ‖X). Let K be a convex closed pointed cone in R

n with any norm
‖ · ‖. Let f(·) be a strongly α(·)-K-paraconvex function defined on ΩX with
values in R

n. Then the function f(·) is:

(a) Fréchet differentiable on a dense Gδ-set provided X is an Asplund space,

(b) Gateaux differentiable on dense Gδ-set provided X is separable.

A vector-valued function f(·) defined on a convex set Ω ⊂ X with values
in the space Z is called uniformly approximate K-paraconvex if for arbitrary
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k ∈ IntrK and arbitrary ε > 0 there is δ = δ(ε, k) such that if x, y ∈ Ω and
‖x− y‖ < δ and 0 ≤ t ≤ 1, then

f
(

tx+ (1− t)y
)

≤K tf(x) + (1− t)f(y) + εmin[t, (1− t)]‖x− y‖k. (2.6)

The class of all uniformly approximate K-paraconvex functions defined on
Ω with values in the space Z shall be denoted UACK(Ω).

proposition 2.3 Let (X, ‖.‖) be a real Banach space. Let Ω ⊂ X be an open
convex subset. Then UACK(Ω) is a convex cone.

Proof. Take any f ∈ UACK(Ω) and any λ > 0. Since f ∈ UACK(Ω) for every
ε > 0 and k ∈ IntrK there is δ > 0 such that

f
(

tx+ (1− t)y
)

≤K tf(x) + (1− t)f(y) +
ε

λ
min[t, (1− t)]‖x− y‖k, (2.6)λ,k

provided ‖x− y‖ < δ.
Multiplying (2.6)λ,k by λ we get

λf
(

tx+(1− t)y
)

≤K tλf(x)+ (1− t)λf(y)+ εmin[t, (1− t)]‖x− y‖k, (2.7)λ,k

i.e. λf ∈ UACK(Ω).
Now, take arbitrary f, g ∈ UACK(Ω). Since f ∈ UACK(Ω), (respectively

g ∈ UACK(Ω)) for every ε > 0 and k ∈ IntrK there is δf > 0 (resp. δg > 0)
such that

f
(

tx+ (1− t)y
)

≤K tf(x) + (1− t)f(y) +
ε

2
min[t, (1− t)]‖x− y‖k, (2.6)f

(respectively

g
(

tx+ (1− t)y
)

≤K tg(x) + (1− t)g(y) +
ε

2
min[t, (1− t)]‖x− y‖k, ) (2.6)g

provided ‖x− y‖ < δf (resp. ‖x− y‖ < δg).
Let δ = min[δf , δg]. Take x, y ∈ Ω such that ‖x − y‖ < δ. Then, by adding

(2.6)f and (2.6)g we get

(f + g)
(

tx+ (1− t)y
)

= f
(

tx+ (1− t)y
)

+ g
(

tx+ (1− t)y
)

≤K tf(x)+(1− t)f(y)+ tg(x)+(1− t)g(y)+εmin[t, (1− t)]‖x−y‖k. (2.6)f+g

Thus f + g ∈ UACK(Ω).

Recall that the set of all strongly α(·)-K-paraconvex functions defined on Ω with
values in the space Z is denoted αPCK(Ω). In a similar way as in Proposition
2.3 we can demonstrate
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proposition 2.4 Let α(·) be a nondecreasing function mapping the interval
[0,+∞) into the interval [0,+∞] such that

lim
t↓0

α(t)

t
= 0. (2.1)

Let (X, ‖ · ‖) be a real Banach space. Let Ω be an open convex subset of X.
Then αPCK(Ω) is a convex cone.

It is trivial that αPCK(Ω) ⊂ UACK(Ω). The following can be shown:

proposition 2.5 (compare Rolewicz, 2001b), Let (X, ‖.‖) be a real Banach
space. Let Ω ⊂ X be an open convex subset. Then

⋃

α

αPCK(Ω) = UACK(Ω), (2.7)

where the union is taken over all nondecreasing functions α(·) mapping the
interval [0,+∞) into the interval [0,+∞) satisfying (2.1). In other words, a
function f(·) is uniformly approximate K-paraconvex if and only if there is α(·)
satisfying (2.1) such that the function f(·) is strongly α(·)-K-paraconvex.

proposition 2.6 Let Ω be an open convex set in a real Banach space X. Let
f(·) be a function defined on Ω with values in the Banach space Z ordered by a
convex pointed cone K with non-empty interior. Suppose that f(·) is differen-
tiable on Ω and that the differentials of f

∣

∣

x
are uniformly continuous functions

of x in the norm topology. Then the function f(·) is uniformly approximate
K-paraconvex.

Proof. Since the differentials of ∂f
∣

∣

x
are uniformly continuous function of x in

the norm topology, there is a function β0 mapping the interval [0,+∞) into the
interval [0,+∞) such that

lim
t↓0

β0(t) = 0, (2.8)

and
‖∂f

∣

∣

x
− ∂f

∣

∣

y
‖ ≤ β0(‖x− y‖). (2.9)

We define

F (t) = f
(

tx+ (1− t)y
)

− tf(x) + (1− t)f(y).

It is easy to observe that F (0) = F (1) = 0.
Let φ be an arbitrary linear continuous functional of norm 1. Let Fφ = φ(F ).

Now we shall calculate its derivative

dFφ

dt

∣

∣

∣

t
= ∂φ(f)

∣

∣

∣

(tx+(1−t)y)
(x− y)− φ(f(x)) + φ(f(y)). (2.10)
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Since Fφ is real-valued and Fφ(0) = Fφ(1) = 0, by the Rolle theorem there

is t0, 0 ≤ t0 ≤ 1, such that dFφ

dt

∣

∣

∣

t0
= 0. Thus for arbitrary t, 0 ≤ t ≤ 1

|
dFφ

dt

∣

∣

∣

t
| = |

dFφ

dt

∣

∣

∣

t
−
dFφ

dt

∣

∣

∣

t0
| ≤ ‖∂f

∣

∣

∣

(tx+(1−t)y)
− ∂f

∣

∣

∣

(t0x+(1−t0)y)
(x− y)‖

≤ β0

(

‖(tx+ (1− t)y)− (t0x+ (1− t0)y)‖
)

‖x− y‖ ≤ β0

(

‖x− y‖
)

‖x− y‖

= β
(

‖x− y‖
)

, (2.11)

where the function β(t) = tβ0(t) satisfies (2.1).
Since Fφ(0) = Fφ(1) = 0, for 0 ≤ t ≤ 1

2 by (1.8) we have

Fφ(t) =

∫ t

0

dFφ

ds

∣

∣

∣

s
ds ≤ tβ

(

‖x− y‖
)

.

Similarly, for 1
2 ≤ t ≤ 1 by (2.11) we have

Fφ(t) =

∫ 1

t

dFφ

ds

∣

∣

∣

s
ds ≤ (1− t)β

(

‖x− y‖
)

.

Finally,
Fφ(t) ≤ min[t, (1− t)]β(‖x− y‖). (2.12)

Since φ is arbitrary linear functional of norm one this implies that

‖F (t)‖ ≤ min[t, (1− t)]β(‖x− y‖). (2.13)

Thus, by definition of F (t)

‖f
(

tx+ (1− t)y
)

− tf(x) + (1− t)f(y)‖ ≤ min[t, (1− t)]β(‖x− y‖). (2.14)

Since the cone K has non-empty interior for each k ∈ K, there is C > 0
such that the ball of radius r, B(r, 0) = {z : ‖z‖ = r is contained in K − Crk,
B(r, 0) ⊂ K − Crk. Thus, from (2.14) it follows that

tf(x)+ (1− t)f(y)− f
(

tx+(1− t)y
)

≥K −Cmin[t, (1− t)]β(‖x− y‖)k, (2.15)

i.e.

f
(

tx+ (1− t)y
)

≤K tf(x) + (1− t)f(y) +Cmin[t, (1− t)]β(‖x− y‖)k, (2.16)

i.e. the function f(·) is strongly β(·)-paraconvex. Therefore it is uniformly
approximate K-paraconvex.

As a consequence of Propositions 2.5 and 2.6 we get
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example 2.1 Let Ω be an open convex set in a real Banach space X. Let f(·)
be a convex function defined on Ω with values in the Banach space Z ordered by
a convex pointed cone K with non-empty interior. Suppose that f(·) is differen-
tiable on Ω and that the differentials of f

∣

∣

x
are uniformly continuous function

of x in the norm topology. Let g(·) be a differentiable function defined on Ω
with values in the space Z. Suppose that the differentials of g

∣

∣

x
are uniformly

continuous function of x in the norm topology. Then the sum of the functions
f(·) and g(·), f(·) + g(·), is uniformly approximate K-paraconvex.

There is a natural question whether every uniformly approximate K-para-
convex function is a sum of a convex and uniformly differentiable functions. It is
not so. We shall present another class of uniformly approximate K-paraconvex
functions, based on the following Theorem.

Theorem 2.2 Let Ω be an open convex set in a real Banach space Y . Let f(·) be
a Lipschitz uniformly approximate K-paraconvex function defined on ΩY with
values in the Banach space Z ordered by a convex pointed cone K with non-
empty interior. Let ΩX be an open convex set in a real Banach space X. Let σ
be a mapping of a ΩX into ΩY such that the differentials of σ

∣

∣

x
are uniformly

continuous function of x in the norm topology. Then the composed function
f(σ(·)) is uniformly approximate K-paraconvex.

The proof is based on the following

lemma 2.1 (Rolewicz, 2007, 2009) Let ΩX ( ΩY ) be an open convex set in a
real Banach space X (respectively Y ). Let σ be a mapping of a ΩX into ΩY

such that the differentials of ∂σ
∣

∣

x
are uniformly continuous functions of x in

the norm topology. Then there is a function β(·) mapping the interval [0,+∞)
into the interval [0,+∞) such that

lim
t↓0

β(t)

t
= 0, (2.1)β

and such that for all x, y ∈ ΩX and 0 ≤ t ≤ 1

‖σ
(

tx+ (1− t)y
)

− [tσ(x) + (1− t)σ(y)]‖ ≤ min[t, (1− t)]β(‖x− y‖). (2.17)

Proof. of Theorem 2.2. Let k be an arbitrary element of the interior of K,
k ∈ Int K. Since f(·) is a uniformly approximate K-paraconvex function, there
are a nondecreasing function α(·) mapping the interval [0,+∞) into the interval
[0,+∞) such that

lim
t↓0

α(t)

t
= 0 (2.1)

and Ck > 0 such that for all y1, y2 ∈ ΩY and 0 ≤ t ≤ 1
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f
(

ty1+(1−t)y2
)

≤K tf(y1)+(1−t)f(y2)+Ck min[t, (1−t)]α(‖y1−y2‖)k. (2.18)

Let x1, x2 ∈ ΩX . We put y1 = σ(x1) and y2 = σ(x2). Then by (2.18)

f
(

tσ(x1) + (1− t)σ(x2)
)

≤K tf(σ(x1)) + (1− t)f(σ(x2)) + Ck

min[t, (1− t)]α(‖y1 − y2‖)k. (2.18′)

Recall that f(·) is a Lipschitz function. We shall denote the Lipschitz con-
stant by M . Thus by Lemma 2.1

‖f
(

σ
(

tx1 + (1− t)x2
)

)

− f
(

tσ(x1)) + (1− t)σ(x2)
)

‖

≤M‖
(

σ(tx1+(1−t)x2)
)

−tσ(x1)+(1−t)σ(x2)‖ ≤M min[t, (1−t)]β(‖x1−x2‖).
(2.19)

Since the cone K has non-empty interior and k ∈ Int K, there is C ′
k > 0

such that for each element z of norm r, ‖z‖ = r, the element z belongs to
K − C ′

krk. Thus,

f(σ(tx1 + (1− t)x2)) ≤K f
(

tσ(x1) + (1− t)σ(x2))
)

+C ′
kM min[t, (1− t)]β(‖x1 − x2‖)k. (2.20)

Since σ(·) is also a Lipschitz function, denoting its Lipschitz constant by L,
by (2.18’) we get

f(σ(tx1+(1−t)x2)) ≤K tf(σ(x1))+(1−t)f(σ(x2))+Ck min[t, (1−t)]α(‖y1−y2‖)k

+C ′
kM min[t, (1− t)]β(‖x1 − x2‖)k ≤K tf(σ(x1)) + (1− t)f(σ(x2))

+
(

Ck min[t, (1− t)]Lα(‖x1 − x2‖) +C ′
kM min[t, (1− t)]β(‖x1 − x2‖)

)

k. (2.21)

It is easy to see that the function α1(u) = CkLα(u)+C
′
kMβ(u) satisfies (2.1)

and that by (2.20) the function f(σ(·)) is strongly α1(·)-paraconvex. Thus, it is
a uniformly approximate K-paraconvex function.

As a consequence of Proposition 2.6, Example 2.1 and Theorem 2.2 we get

example 2.2 Let Y be a real Banach space. Let ΩY be an open convex set
in a Y . Let f(·) be a Lipschitz convex function defined on ΩY with values
in the Banach space Z ordered by a convex pointed cone K with non-empty
interior. Let ΩX be an open convex set in a real Banach space X. Let g(·)
be a differentiable function defined on ΩX with values in Z. Suppose that the
differentials of g

∣

∣

x
are uniformly continuous function of x in the norm topology.

Let h(·) be a real-valued Lipschitz convex function defined on ΩY with values
in Z. Let σ be a mapping of a ΩX into ΩY such that the differentials of σ

∣

∣

x
are

uniformly continuous function of x in the norm topology.
Then the sum
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u(·) = f(·) + g(·) + h(σ(·)) (2.22)

is uniformly approximate K-paraconvex.

Let (X, ‖ · ‖) be a normed space. Let f(·) be a function defined on a subset
ΩX ⊂ X with values in the Banach space Z ordered by a convex pointed cone
K. We say that the function is vector bounded (vector upper bounded, vector
bounded from below) if there is k ∈ K (respectively ku ∈ K, kb ∈ K ) such that

−k ≤K f(x) ≤K k (2.23)

(respectively
f(x) ≤K ku (2.23u)

−kb ≤K f(x).) (2.23b)

proposition 2.7 Let X be a real Banach space X. Let f(·) be a bounded
function defined on ΩX ⊂ X with values in the Banach space Z ordered by a
convex pointed cone K with non-empty interior. Then f(·) is a vector bounded
function.

Proof. Since the function f(·) is bounded, there is M > 0 such that for all
x ∈ ΩX

‖f(x)‖ ≤M. (2.24)

The cone K has non-empty interior and k ∈ Int K. Thus, there is C ′
k > 0

such that for each element z of norm less than M , ‖z‖ ≤K M , the element z
belongs to (K − C ′

kMk) ∩ −K + C ′
kMk). Hence

−C ′
kMk ≤K f(x) ≤K C ′

kMk (2.25)

i.e. f(·) is a vector bounded function.

proposition 2.8 Let X be a real Banach space X. Let f(·) be a vector
bounded function defined on ΩX ⊂ X with values in the Banach space Z or-
dered by a convex pointed cone K with bounded basis. Then f(·) is a bounded
function.

Proof. Since the function f(·) is vector bounded, there is k ∈ K such that for
all x ∈ ΩX

−k ≤K f(x) ≤K k. (2.23)

The cone K has bounded basis. Thus, there is M > 0 such that
[

(K − k) ∩ (−K + k)
]

⊂ {z ∈ Z : ‖z‖} ≤M.
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So for all x ∈ ΩX

‖f(x)‖ ≤M, (2.24)

i.e. f(·) is a bounded function.

Let (X, ‖ · ‖) be a real Banach space. Let f(·) be a function defined on
a subset ΩX ⊂ X with values in the Banach space Z ordered by a convex
pointed cone K. We say that the function is vector Lipschitz if there is k ∈ K

(respectively ku ∈ K, kb ∈ K) such that

−‖x− x′‖k ≤K f(x)− f(x′) ≤K ‖x− x′‖k (2.26)

for arbitrary x, x′ ∈ Ω.

proposition 2.9 Let X be a Banach space X. Let f(·) be a Lipschitz function
defined on ΩX ⊂ X with values in the Banach space Z ordered by a convex
pointed cone K with non-empty interior. Then f(·) is a vector Lipschitz func-
tion.

Proof. Since the function f(·) is Lipschitz, there is M > 0 such that for all
x, x′ ∈ ΩX .

‖f(x)− f(x′)‖ ≤M‖x− x′‖ (2.27)

The cone K has non-empty interior and k ∈ Int K. Thus there is C ′
k > 0

such that for each element z of norm less than M , ‖z‖ ≤K M , the element z
belongs to (K − C ′

kMk) ∩ −K + C ′
kMk). Hence

−C ′
kM‖x− x′‖k ≤K f(x)− f(x′) ≤K C ′

kM‖x− x′‖k (2.28)

i.e. f(·) is a vector Lipschitz function.

proposition 2.10 Let Ω be a set in a real Banach space X. Let f(·) be a
vector Lipschitz function defined on ΩX ⊂ X with values in the Banach space
Z ordered by a convex pointed cone K with bounded basis. Then f(·) is a
Lipschitz function.

Proof. Since the function f(·) is vector Lipschitz, there is k ∈ K such that for
all x, x′ ∈ ΩX

−k ≤K f(x)− f(x′) ≤K k. (2.29)

The cone K has bounded basis. Thus
[

(K −Mk) ∩ −K +Mk)
]

⊂ {z ∈ Z : ‖z‖ ≤M}.

So, for all x ∈ ΩX

‖f(x)‖ ≤M, (2.24)

i.e. f(·) is a bounded function.
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3. Localization

In this section we shall investigate localization of the notions of uniformly ap-
proximate K-paraconvex functions and strongly α(·)-K-paraconvex functions.

Let X be a real Banach space. Let f(·) be a mapping defined on an open
subset Ω ⊂ X with values in the Banach space Z ordered by a convex pointed
cone K. We say that f(·) is locally uniformly approximate K-paraconvex if for
all x0 ∈ Ω there is a convex open neighbourhood Ux0

of x0 such that the function

f(·) restricted to Ux0
, f

∣

∣

∣

Ux0

(·), is uniformly approximate K-paraconvex. In

other words, a function f(·) is locally uniformly approximate K-paraconvex
if for all x0 ∈ Ω there is a convex open neighbourhood Ux0

of x0 such that
for arbitrary ε > 0 there is δ = δ(ε, Ux0

) such that for x, z ∈ Ux0
such that

‖x − x0‖ < δ and ‖z − x0‖ < δ and 0 ≤ t ≤ 1 and every k belonging to the
relative interior of K, k ∈ K there is Ck such that

f
(

tx+ (1− t)z
)

≤K tf(x) + (1− t)f(z) + Ckεmin[t, (1− t)]‖x− z‖k. (2.6)

The class of all locally uniformly approximate K-paraconvex functions de-
fined on Ω shall be denoted UACLoc

K (Ω).
Basing on the definition of locally uniformly approximate K-paraconvex

function and Proposition 2.3 we can easily demonstrate

proposition 3.1 Let (X, ‖.‖) be a real Banach space. Let Ω be an open subset
of X, Ω ⊂ X. Then, UACLoc

K (Ω) is a convex cone.

Proof. Take any f ∈ UACLoc
K (Ω) and any λ > 0. Take arbitrary x0 ∈ Ω. By

definition there is a convex open neighbourhood Ux0
of x0 such that the function

f(·) restricted to Ux0
, f

∣

∣

∣

Ux0

(·), is uniformly approximate K-paraconvex. Thus,

by Proposition 2.4. λf
∣

∣

∣

Ux0

(·) is uniformly approximate K-paraconvex, too.

Therefore λf ∈ UACLoc
K (Ω).

Take any f, g ∈ UACLoc
K (Ω). Take arbitrary x0 ∈ Ω. By definition there are

convex open neighbourhoods Uf
x0

of x0 and Ug
x0

of x0 such that the function f(·)

restricted to Uf
x0

, f
∣

∣

∣

U
f
x0

(·) and the function g(·) restricted to Ug
x0

, g
∣

∣

∣

U
g
x0

(·) are

uniformly approximate K-paraconvex. Let Ux0
= Uf

x0
∩ Ug

x0
. Thus by Propo-

sition 2.4. (f + g)
∣

∣

∣

Ux0

(·) is uniformly approximate K-paraconvex. Therefore,

(f + g) ∈ UACLoc
K (Ω).

Let X be a real Banach space. Let α(·) be a nondecreasing function mapping
the interval [0,+∞) into the interval [0,+∞), satisfying (2.1). Let f(·) be a
mapping defined on an open subset Ω ⊂ X with values in the Banach space Z
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ordered by a convex pointed cone K. We say that f(·) is locally strongly α(·)-K-
paraconvex if for all x0 ∈ Ω there is a convex open neighbourhood Ux0

of x0 such

that the function f(·) restricted to Ux0
, f

∣

∣

∣

Ux0

(·), is strongly α(·)-Kparaconvex.

The set of all locally strongly α(·)-paraconvex functions defined on Ω shall be
denoted αPCLoc(Ω). In a similar way as in Proposition 3.1 we can demonstrate

proposition 3.2 Let α(·) be a nondecreasing function mapping the interval
[0,+∞) into the interval [0,+∞) satisfying (1.2). Let (X, ‖.‖) be a real Banach
space. Let Ω be an open convex subset of X. Then αPCLoc(Ω) is a convex
cone.

Let (X, ‖ · ‖) be a normed space. Let f(·) be a function defined on an open
subset Ω ⊂ X with values in the Banach space Z ordered by a convex pointed
cone K.

We say that a function f(·) is locally bounded if for any x0 ∈ Ω, there is
a convex neighbourhood Ux0

of the point x0 such that the restriction of the
function f(·) to the set Ux0

, f |Ux0
(·) is bounded.

We say that the function f(·) is locally vector Lipschitz if for any x0 ∈ Ω,
there is a convex neighbourhood Ux0

of the point x0 such that the restriction of
the function f(·) to the set Ux0

, f |Ux0
(·) is vector Lipschitz.

Repeating the considerations of Jourani (1996) we shall prove

proposition 3.3 Let (X, ‖ · ‖) be a normed space. Let a function f(·) defined
on an open subset Ω ⊂ X with values in the Banach space Z ordered by a
convex pointed cone K be locally strongly α(·)-K-paraconvex and locally vector
bounded. Then it is locally vector Lipschitz.

Proof. Let x0 ∈ Ω be arbitrary. Since f is locally bounded, there are k ∈ Intr K

and r > 0 such that for any y ∈ Ω such that ‖y − x0‖ < r we have

−k ≤K f(y) ≤K k. (3.1)

Let x, u be two arbitrary elements of Ω such that ‖x−x0‖ < r
2 , ‖u−x0‖ < r

2 .
Let ε be an arbitrary positive number, let β = ε+ ‖x− u‖ and let

v = u+
r

2β
(u− x). (3.2)

Observe that

‖v − x0‖ < ‖u− x0‖+
r

2β
‖u− x‖ <

r

2
+
r

2

‖x− u‖

ε+ ‖x− u‖
< r

and so

−k ≤K f(v) ≤K k. (3.1v)
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Let λ = 2β
r+2β . Observe that u = λv + (1− λ)x.

Since the function f(·) is strongly α(·)-K-paraconvex, there is a constant
C > 0, such that

f(u) = f
(

λv + (1− λ)x
)

≤K λf(v) + (1− λ)f(x) + Cλα(‖x− v‖)k. (3.2)

Thus,

f(u)− f(x) ≤K λ(f(v)− f(x)) + Cλα(‖x− v‖)k. (3.3)

Since λ‖v − x‖ = ‖u− x‖, we get

f(u)− f(x) ≤K λ(f(v)− f(x)) + Cλα(
‖u− x‖

λ
)k. (3.3)

Recall that 0 < λ < 1 and thus

f(u)− f(x) ≤K λ(f(v)− f(x)) + Cλα(‖x− v‖)k ≤K λ
(

2 + Cα(2r)
)

k

≤K

2β

r

(

2a+ Cα(2r)
)

k ≤ L(ε+ ‖u− x‖)k, (3.4)

where L = 2
r

(

2a+ Cα(2r)
)

.
By exchanging the roles of x and u we get

f(x)− f(u) ≤K L(ε+ ‖u− x‖)k. (3.6)

Thus
−L(ε+ ‖u− x‖)k ≤K f(u)− f(x). (3.7)

By (3.4) and (3.7) and the arbitrariness of ε we obtain

−L‖u− x‖k ≤K f(u)− f(x) ≤K L‖u− x‖k. (3.8)

�

proposition 3.4 Let (X, ‖ · ‖) be a normed space. Let a function f(·) defined
on an open subset Ω ⊂ X with values in the Banach space Z ordered by a convex
pointed cone K with non-empty interior be continuous. Then it is locally vector
bounded.

Proof. Let x0 ∈ Ω. Since the function f(·) is continuous for every ε > 0, there
is a neighbourhood Ux0

of the point x0 such that for any x ∈ Ux0

‖f(x)− f(x0)‖ < ε. (3.9)

The cone K has non-empty interior for any k ∈ Int K. Therefore there is
C ′

k > 0 such that
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−C ′
kεk ≤K f(x)− f(x0) ≤K C ′

kεk (3.10)

and simultaneuosly

−C ′
k‖f(x0)‖k ≤K f(x)− f(x0) ≤K C ′

k‖f(x0)‖k. (3.11)

Finally,

−C ′
k(‖f(x0)‖+ ε)‖k ≤K f(x) ≤K C ′

k(‖f(x0)‖+ ε)k. (3.12)

�

Without the assumption that K is open, Proposition 3.5 does not hold as
shown by the following simple example.

example 3.1 Let X = [0, 1]. Let Z = R
2 and K = {(0, t), t ≥ 0}. Then the

function f(t) = (t, 0) is continuous but it is not locally vector bounded.

By Propositions 3.3 and 3.4 we get

corollary 3.1 Let (X, ‖·‖) be a normed space. Let a function f(·) defined on
an open subset Ω ⊂ X with values in the Banach space Z ordered by a convex
pointed cone K with non-empty interior be continuous and locally strongly
α(·)-K-paraconvex. Then it is locally vector Lipschitz.

Basing on Theorem 2.2 and Proposition 3.3 we can prove

proposition 3.5 Let ΩX (ΩY ) be an open set in a real Banach spaceX (respec-
tively Y ). Let f(·) be a locally Lipschitz uniformly approximate K-paraconvex
function defined on ΩY with values in the Banach space Z ordered by a convex
pointed cone K with non-empty interior. Let ΩX be an open convex set in a real
Banach space X. Let σ be a mapping of a ΩX into ΩY such that the differentials
of σ

∣

∣

x
are uniformly continuous function of x in the norm topology. Then the

composed function f(σ(·)) is locally uniformly approximate K-paraconvex.

Proof. Take arbitrary x ∈ ΩX . Since f(·) is a locally uniformly approximate
K-paraconvex function, there is a convex neighbourhood Ûσ(x) of σ(x) such that

the restriction of f(·) to the set Ûσ(x), f
∣

∣

∣

Ûσ(x)

(·), is uniformly approximate K-

paraconvex. Without loss of generality we may assume that that the restriction

of f(·) to the set Ûσ(x), f
∣

∣

∣

Ûσ(x)

(·) is a Lipschitz function, since each uniformly

approximate K-paraconvex function is locally Lipschitz.
By our assumptions the differentials of σ

∣

∣

x
are locally uniformly continuous

function of x. Thus, there is a convex neighbourhood Ux of x such that the
differentials of σ

∣

∣

Ux
are uniformly continuous function of its argument on Ux.

Without loss of generality we may assume that
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σ(Ux) ⊂ Ûσ(x). (3.13)

Thus, by Theorem 2.2 f
∣

∣

∣

Ux

(σ(·)) is uniformly approximate K-paraconvex func-

tion. Therefore, by definition, f(σ(·)) is a locally uniformly approximate K-
paraconvex function defined on ΩX .

Using Theorem 2.1 we can obtain

Theorem 3.1 Let ΩY be an open convex set in a real Banach space Y . Let
Z be n-dimensional Banach space ordered by a convex pointed cone K with
non-empty interior. Let f(·) be a locally uniformly approximate K-paraconvex
function function defined on ΩY with values in Z. Let ΩX be an open convex
set in a real Banach space X. Let σ be a mapping of a ΩX into ΩY such that the
differentials of σ

∣

∣

x
are uniformly continuous function of x in the norm topology.

Then the composed function f(σ(·)) is:

(a). Fréchet differentiable on a dense Gδ-set provided X is an Asplund space,

(b). Gateaux differentiable on dense Gδ-set provided X is separable.

Proof. We denote by D the set of points of ΩX for which the composed function
f(σ(·)) is Fréchet differentiable in case (a) and Gateaux differentiable in case
(b).

By Proposition 3.5 the composed function f(σ(·)) is locally uniformly ap-
proximate K-paraconvex. Recall that by Proposition 3.3 each locally uniformly
approximate K-paraconvex functions is also locally Lipschitz.

Therefore, there is an open covering U={Uγ}, γ ∈ Γ of ΩX such that for

each γ ∈ Γ, the restricted function f(σ
∣

∣

∣

Uγ

(·)) is uniformly approximate K-

paraconvex and vector Lipschitz.
Therefore, as a simple consequence of Theorem 2.1, we get that the set

D∩Uγ for which the composed function f(σ(·)) is Fréchet differentiable in case
(a) (see Rolewicz, 1999, 2002, 2005) and Gateaux differentiable in case (b) (see
Rolewicz, 2006) is a Gδ-set.

This means that D is a local Gδ-set.
Hence, by the Michael theorem (Michael, 1954) D is a Gδ-set.

4. Differentiability of locally uniformly approximate K-

paraconvex functions with values in finite dimensional

spaces on C
1,u

E
-manifolds

As an application of Theorem 3.1 we get a result concerning differentiability of
locally uniformly approximate K-paraconvex functions on manifolds with values
in finite dimensional spaces.



458 S. ROLEWICZ

Let E, F, be real Banach spaces. We say that a function ψ : E → F is of
the class C1,u

E,F if it is continuously differentiable and, moreover, that differential

∂ψ
∣

∣

∣

x
is locally uniformly continuous as a function of x in the norm topology. Of

course, if ψ ∈ C
1,u
E,F, then ψ belongs to the class of continuously differentiable

functions, ψ ∈ C1
E,F.

If E = F we denote briefly C1,u
E,E = C

1,u
E

.

Now we shall determine C1,u
E

-manifold in the classical way (compare Lang,
1962).

Let X be a set. An C
1,u
E

-atlas is a collections of pairs (Ui, φi) (i ranging in
some indexing set) satisfying the following conditions:

AT 1. Each Ui is a subset of X and {Ui} covers X,
AT 2. Each φi is a bijection of Ui onto an open subset φi(Ui) of the space

E, and for all i, j, φi(Ui ∩ Uj) is an open subset of the space E,
AT 3. The map φjφ

−1
i mapping φi(Ui ∩ Uj) onto φj(Ui ∩ Uj) is of the class

C
1,u
E

for all i, j.
Each pair (Ui, φi) is called a chart. If x ∈ Ui, then the pair (Ui, φi) is called

a chart at x.

Observe that AT 3 implies that
(

φjφ
−1
i

)−1

= φiφ
−1
j ∈ C

1,u
E
.

Suppose now that X is a topological space and let U be an open set in X.
Suppose that there is a topological isomorphism φ mapping U onto an open set
U ′ ∈ E. We say that (U, φ) is compatible with the C1,u

E
-atlas (Ui, φi) if for all

i the maps φiφ−1 and φφ−1
i belong to C1,u

E
. We say that two C1,u

E
-atlases are

compatible if each chart of one is compatible with the other C1,u
E

-atlas.

A topological space X equipped with C1,u
E

-atlas (Ui, φi) shall be called C1,u
E

-
manifold.

definition 4.1 We say that a function f(·) defined on a C1,u
E

-manifold X with
values in the Banach space Z ordered by a convex pointed cone K with non-
empty interior is locally uniformly approximate K-paraconvex on X if there is a
C

1,u
E

-atlas (Ui, φi) such that for all i the function f(φ−1
i (·)) is locally uniformly

approximate K-paraconvex on the set φi(Ui) ⊂ E.

As an immediate consequence of AT 3 and Proposition 2.2 we obtain

proposition 4.1 Let X be topological space. Let C1,u
E

-atlas (Ui, φi) on X. If
a function f(φ−1

i (·)) is locally uniformly approximate K-paraconvex on Ui ∩Uj

then the function f(φ−1
j (·)) is also locally uniformly approximate K-paraconvex

on Ui ∩ Uj .

As a consequence of definition of compatibility of C1,u
E

-atlases and Proposition
3.5 we obtain
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proposition 4.2 Let X be topological space. Let (Ui, φi) and (Vj , µj) be two

compatible C1,u
E

-atlases on X. Let f(·) be a function defined on X with values
in the Banach space Z ordered by a convex pointed cone K with non-empty
interior. If a function f(·) is locally uniformly approximate K-paraconvex with
respect to the C1,u

E
-atlas (Ui, φi), then it is also locally uniformly approximate

K-paraconvex with respect to the C1,u
E

-atlas (Vj , µj).

Let X be a C
1,u
E

-manifold. Let (Ui, φi) be a C
1,u
E

-atlas on X. Let f(·) be a
function defined X with values in the Banach space Z ordered by a convex
pointed cone K with non-empty interior. We say that the function f(·) is
Fréchet (Gateaux) differentiable at x0 ∈ Ui if the function f(φ−1

i (·)) is Fréchet
(respectively Gateaux) differentiable at φi(x0).

Basing on this definition and Theorem 3.1 we get

Theorem 4.1 Let X be a C1,u
E

-manifold. Let f(·) be a function defined X with
values in the finite dimensional Banach space Z ordered by a convex pointed cone
K with non-empty interior. Suppose that the function f(·) is locally uniformly
approximate K-paraconvex function defined on X. Then it is: (a). Fréchet
differentiable on a dense Gδ-set provided E is an Asplund space, (b). Gateaux
differentiable on a dense Gδ-set provided E is separable.

Now we shall determine C1,u
E

-submanifold in the classical way (compare Lang,
1962).

Let X be a C
1,u
E

-manifold. Let Y be a subset of X. We assume that for
each point y ∈ Y there exists a chart (V, ψ) in X such that V1 = ψ(V ∩ Y ) is
an open set in some Banach subspace E1 ⊂ E. The map ψ induces a bijection

ψ1 : Y ∩ V → V1 (4.1)

and, moreover, ψ1 ∈ C
1,u
E1

The collection of pairs (Y ∩ V, ψ1) obtained in the above manner constitute
the atlas for Y . We shall call Y C

1,u
E1

-submanifold of X.

Theorem 4.2 Let X be a C1,u
E

-manifold. Let Y be an its C1,u
E1

-submanifold.
Let f(·) be a function defined on X with values in the finite dimensional Banach
space Z ordered by a convex pointed cone K with non-empty interior. Suppose
that the function f(·) is locally uniformly approximate K-paraconvex function

defined on X. Then the restriction f
∣

∣

∣

Y
is locally uniformly approximate K-

paraconvex function defined on Y .

Proof. By our assumption the function f(ψ−1) is a locally uniformly approx-

imate K-paraconvex function on ψ(V ). Thus, its restriction f(ψ−1)
∣

∣

∣

Y
(·) =

f(ψ−1
1 (·)) to V1 is also a locally uniformly approximate K-paraconvex function

and by definition f
∣

∣

∣

Y
is locally uniformly approximate K-paraconvex function

defined on Y .
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As an obvious consequence of Theorems 4.1 and 4.2 we obtain

Theorem 4.3 Let X be a C1,u
E

-manifold. Let Y be an its C1,u
E1

-submanifold.
Let f(·) be a function defined on X with values in the finite dimensional Banach
space Z ordered by a convex pointed cone K with non-empty interior. Suppose
that the function f(·) is locally uniformly approximate K-paraconvex function.

Then the restriction f
∣

∣

∣

Y
is:

(a). Fréchet differentiable on a dense Gδ-set provided E1 is an Asplund space,
(b). Gateaux differentiable on a dense Gδ-set provided E1 is separable.
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