PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An elbow planar manipulator driven by induction motors using sliding mode control for current loop

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The control of a planar elbow manipulator driven by a squirrel-cage induction motor using sliding mode control (SMC) is presented in this paper. The modeling of the manipulator mechanical coupling as a load applied to the induction motor shaft is developed. This has direct influence on both dq currents, which are chosen as the sliding manifold instead of controlling both mechanical and electrical parts as individual processes like most industrial manipulators do. Conventional proportional-integral (PI) controllers are used for each loop, implying easy design procedure and implementation with low computational effort. The system can then be implemented by using a digital signal processor (DSP) and applied in industrial environments. Simulation and experimental results on a real manipulator are shown to validate the proposed control scheme. The results show that there is low steady-state error for the manipulator position.
Rocznik
Strony
395--413
Opis fizyczny
Bibliogr. 22 poz., il., wykr.
Twórcy
  • Federal University of Ceará Department of Electrical Engineering Fortaleza-CE, 60.455-760, Brazil, eber@ufc.br
Bibliografia
  • Aström K.J., Lee T.H., Tan K.K. and Johansson K.H. (1995) Recent Advances in Relay Feedback Methods-A Survey. IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century, 3, 2616-2621.
  • Blaschke F. (1971) The Principle of Field Orientation - the Basis for the Transvector Control of Three-Phase Machines. Siemens Zeitschrift, 3(10): 757-760.
  • Bose B. K. (2001) Modern Power Electronics and AC Drives, 1st edition. Prentice-Hall PTR
  • Camara H. T., Carati E. G., Hey H. L., Pinheiro H., Pinheiro J. R. and Grundling H. A. (2003) Speed and Position Servo for Induction Motor using Robust Model Reference Adaptive Control. IECON 28th Annual Conference of the Industrial Electronics Society 2: 779-787.
  • Casadei D., Profumo F., Serra G. and Tani A. (2002) FOC and DTC: Two Viable Schemes for Induction Motor Torque Control. IEEE Transactions on Power Electronics 17 (5): 177-185.
  • Chan C. C. and Wang H. Q. (1996) New Scheme of Sliding-Mode Control for High Performance Induction Motor Drives. IEEE Proceedings in Electric Power Applications 143 (3): 177-185.
  • Diniz E. C Júnior, Honório A. B. S., Almeida D. A. and Barreto L. H. S. C. (2010 a) Comparison Between Sliding Mode Control and Vector Control for a DSP-Based Position Control Applied to Squirrel-Cage Induction Motor. 9th IEEE/IAS International Conference on Industry Applications 1: 553-558.
  • Diniz E. C Júnior, Honório A. B. S., Almeida D. A. and Barreto L. H. S. C. (2010 b) Simplified Approach for Modelling and Control a 3-DOF RRR type Robotic Manipulator Using Squirrel-Cage Induction Motors. 9th IEEE/IAS International Conference on Industry Applications 8, 1-7.
  • Faa Jeng Lin, Po Kai Huang, Chou W.D. (2007) Recurrent Fuzzy Neural Network Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms. IEEE Transactions on Industrial Electronics 3 (54): 1449-1461.
  • Gadoue S.M., Giaouris D. and Finch J.W.(2009) Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neutral Network Flux Observers. IEEE Transactions on Industrial Electronics 56 (8): 3029-3039.
  • Gao W. and Hung J.C. (1993) Variable Structure Control Of Nonlinear Systems: A New Approach. IEEE Transactions on Industrial Electronics 49 (1): 45-55.
  • Holtz J.(1994) Pulse Width Modulation for Electronic Power Conversion. IEEE Proceedings in Electronic Industrial Electronics 82 (8):1194-1214.
  • Huh S.- H. and Bien Z. 1993) Robust Sliding mode Control of a Robot Manipulator Based on Variable Structure-Model Reference Adaptive Control Approach. IET Control Theory & Applications 1 (5):1355-1363.
  • Jussi P. (2006) Induction Motor Versus Permanent Magnet Synchronous Motor in Motion Control Applications: A Comparative Study. Department of Electrical Engineering. University of Lappeenranta, Lappeenranta, Finland.
  • Kumar R., Gupta R.A. and Bhangale S.V. (2009) Vector Control Techniques for Induction Motor Drive: A Review. International Journal of Automation and Control 3 (4): 284-306.
  • Novotny D. W. and Lipo T.A. (1996) Vector Control and Dynamics of AC Drives. 1st edition. Oxford University Press, New York.
  • Osama M. and Abdul-Azim O. (2008) Implementation and Performance Analysis of An Elevator Electric Motor Drive System. 12th International Middle-East Power System Conference 5 (12):114-118.
  • Shiau L. G. and Lin J. L.(2001) Stability of Sliding-mode Current Control for High Performance Induction Motor Position Drives. IEEE Proceedings in Electronic Power Applications 148 (1): 69-75.
  • Spong M. W. and Vidyasagar M.(2004) Robot Dynamics and Control, 1st. edition. Wiley & Sons, Asia.
  • Szabat K., Orlowska-Kowalska T. and Dybkowski M.(2009) Indirect Adaptive Control of Induction Motor Drive System with an Elastic Coupling. IEEE Proceedings in Electronic Industrial Electronics 56 (10): 4038-4042.
  • Tomei P., Verrelli C. M., Montanari M. and Tilli A. (2009) Robust Output Feedback Learning Control for Induction Motor Servo Drives. International Journal of Robust and Nonlinear Control 15 (19):1745-1759.
  • Trzynadlowski A. M. (1982) The Field Orientation Principle in Control of Induction Motors, 1st edition. Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.