PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved linear complexities of the frequency hopping sequences in two optimal sets

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the anti-jamming purpose, high linear complexity is desired for each frequency hopping sequence in an optimal set. Using a proper power permutation, Wang has shown that an optimal set of frequency hopping sequences with small linear complexity can be transformed into a new optimal set of frequency hopping sequences with large linear complexity. This paper conains two results. First, we extend the result of Wang. A power permutation is only suitable for a special construction of optimal set of frequency hopping sequences, see Wang (2011). However, the power permutation chosen in this paper applies to the general construction of optimal set of frequency hopping sequences. Second, by using a binomial permutation polynomial P(x), which is different from those permutations used before, we obtain a novel optimal set of frequency hopping sequences with high linear complexity from an optimal set of frequency hopping sequences with small linear complexity. By counting the number of different roots in the sequence representation, we determine the linear complexities of the frequency hopping sequences in two optimal sets transformed by the power permutation or binomial permutation.
Rocznik
Strony
317--334
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
autor
Bibliografia
  • Bogart, K. Stein, C. and Drysdale, R. L. (2005) Discrete Mathematics for Computer Science. Key College Publishing, Emeryville, California, U.S.A..
  • Chu, W. and Colbourn, C. J. (2005) Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inf. Theory, 51(3), 1139-1141.
  • Courtois, N. and Meier, W.(2003) Algebraic attacks on stream ciphers with linear feedback. Lecture Notes in Computer Science, 2656, 345-359. Springer-Verlag.
  • Ding, C. Fuji-Hara, R. Fujiwara, Y. Jimbo, M. and Mishima, M.(2009) Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory, 55(7), 3297-3304.
  • Ding, C. Miosio, M. J. and Yuan, J. (2007) Algebraic constructions of optima frequency hopping sequences. IEEE Trans. Inf. Theory, 53(7), 2606-2610.
  • Ding, C. and Yin J. (2008) Sets of optimal frequency hopping sequences. IEEE Trans. Inf. Theory, 54(8), 3741-3745.
  • Fuji-Hara, R. Miao, Y. and Mishima, M. (2004) Optimal frequency hopping sequences: A combinatorial approach. IEEE Trans. Inf. Theory, 50(10), 2408-2420.
  • Ge, G. Fuji-Hara, R. and Miao, Y. (2006) Further combinatorial construction for optimal frequency hopping sequences. J. Comb Theory A, 113(8), 1699-1718.
  • Ge, G. Miao, Y. and Yao, Z. (2009) Optimal frequency hopping sequences: Auto- and cross-correlation properties. IEEE Trans. Inf. Theory, 55(2), 867-879.
  • Golomb, S. W. and Gong, G. (2005) Signal Design for Good Correlation, for Wireless Communication, Cryptography, and Radar. Cambridge Univ. Press, Cambridge, U.K.
  • Komo, J. J. and Liu, S. C. (1990) Maximal length sequences for frequency hopping. IEEE J. Sel. Areas Commun., 8(5), 819-822.
  • Kumar, P. V. (1988) Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory, 34(1), 146-151.
  • Laigle-Chapuy, Y. (2007) Permutation polynomials and applications to coding theory. Finite Fields Th. App., 13(1), 58-70.
  • Lempel, A. and Greenberger, H. (1974) Families of sequences with optima Hamming correlation properties. IEEE Trans. Inf. Theory, 20(1), 90-94.
  • Lidl, R. and Harald, N. (1983) Finite fields. Encyclopedia of Mathematics and Its Applications, 20. Addison-Wesley, Reading, Massachusetts, U.S.A..
  • Meier, W. and Staffelbach, O. (1998) Fast correlation attacks on stream ciphers. Lecture Notes in Computer Science 330, 301-314.
  • Peng, D. and Fan, P. (2004) Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory, 50(9), 2149-2154.
  • Simon, M. K. Omura, J. K. Scholz, R. A. and Levitt, B. K. (2002) Spread Spectrum Communications Handbook. McGraw-Hill, New York, U.S.A.
  • Udaya, P. and Siddiqi, M. U. (1998) Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory, 44(4), 1492-1503.
  • Wang, Q. (2010) Optimal sets of frequency hopping sequences with large linear spans. IEEE Trans. Inf. Theory, 56(4), 1729-1736.
  • Wang, Q. (2011) The linear span of the frequency hopping sequences in optima sets. Design. Code. Cryptogr., 61(3), 331-344.
  • Zhou, Z. and Tang, X. (2009) A new construction of optimal frequency hopping sequence sets. In: Proceedings of IWSDA 2009, Fukuoka, Japan. IEEE Press, New Jersey, 92-95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.