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Abstract: The advent of modern low-cost monitoring and wire-
less transmission systems results in unprecedented availability of
measurement data potentially available in near real-time mode. In
particular, some of the remote meter reading systems can be used
to collect data on an hourly or even sub-hourly basis. This allows
the utility companies to model and predict consumer behaviour more
precisely than before. In this study, the way the monitoring data can
be used to model heat consumption at individual premises supplied
with heat by a district heating system, is proposed.

The proposed algorithm is based on customer partitioning used
to devise a number of group models serving the needs of consumers
sharing similar consumption profiles. Self-organising maps are used
to group averaged long-term time series, while the short-term time
series provide a basis for group prediction models. Particular atten-
tion has been paid to a wider hydraulic modelling perspective, as
the application of the proposed method to provide assumed demand
for hydraulic model of a district heating system is envisaged. The
approach has been validated using a real data set. Results show that
in spite of a limited number of monitored consumers, group predic-
tion models, constructed using the algorithm proposed in this study,
can significantly reduce demand prediction error.

Keywords: district heating systems, demand prediction, neu-
ral networks.

1. Introduction

1.1. Control strategies for utility networks

The operators of utility networks, such as water supply, power grid networks or
district heating systems (DHS) have to provide sufficient quality of services on
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regular basis. In case of pipe-based networks, hydraulic modelling (Bhave and
Gupta, 2006; Walski et al., 2004) has been used to predict system behaviour
under known operational settings of sources, e.g., pressures applied in water pu-
rification plants and assumed consumer behaviour. In the case of water supply
systems, being the most widely used pipe-based utility networks, consumption
profiles have been usually developed based on individual studies or the inves-
tigation of daily or weekly water consumption profiles for flow control zones.
For planning and design purposes, even simpler approach is considered i.e. the
variation of water consumption is accounted for by a peaking factor (Bhave and
Gupta, 2006). While this approach is sufficient for steady state simulations, ex-
tended period simulations (EPS) (Bhave and Gupta, 2006; Walski et al., 2004)
are used to consider changing demand throughout the day. Such simulations
are required to achieve flow and pressure time series comparable to real time
series collected in the system and predict the hydraulic behaviour of a system.

Limited consumption data available for such studies have frequently resulted
in only rough estimation of consumer needs in modelling projects. Unfortu-
nately, billing records, provide enough information to determine a baseline de-
mand, but not enough to determine fluctuations in demand on a finer time scale
required for EPS (Walski et al., 2004). These temporal variations can be de-
scribed for 24-hour cycle by diurnal demand pattern based on the investigation
of the data acquired from water meters. In general, the problem remains an
open issue as temporal demand variations are known to change not only on
daily basis, but also weekly and annually and depend on weather conditions,
too (Bhave and Gupta, 2006; Walski et al., 2004).

At the same time, the rapid development of low-cost remote metering sys-
tems has started to provide a vast volume of data. Both data collected in
consumers’ premises and key network points have become available. Such data
can be used to model consumer behaviour and optimise the configuration of an
entire utility system including the changes in production strategies aiming to
minimise the cost of operation while ensuring the quality of service.

The development of an appropriate control strategy is crucial also for a DHS
(Balate et al., 2007). As transported heat is used for space heating and hot tap
water, the required volume of heat constantly changes. At a consumer level, it
depends on a number of factors, weather conditions, life style and time of day
being the most important of them. Moreover, due to its strong relation to at
least two leading factors i.e. time of the day and week and outdoor temperature,
heat consumption profile can not be developed as a function of one argument
only. What makes the control strategy for DHS systems particularly difficult
to develop is also the fact that it may take even several hours to transfer extra
heat from a heat source to a heat consumer. In other words, particularly large
inertia of DHS systems compared to other systems, e.g., water supply networks
has to be emphasized (Youen, 2009). Not surprisingly, errors in load prediction
result in significant problems in managing a DHS (Park et al., 2009; Sandou et
al., 2005).
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At the same time, district heating system operators should minimise the cost
of operation by eliminating unnecessary heat production. Hence, it is extremely
important to build an appropriate control strategy for a DHS. A control system
for DHS requires a number of problems to be solved (Balate et al., 2007). One
of them is the implementation of a demand prediction module. Still, even recent
studies (Park et al., 2009) notice that most optimisation solutions reported so
far do not include demand prediction.

The development of heat meters (Móczar, Csubák and Várady, 2002; Ye,
Zhang and Diao, 2005) allows to capture heat consumption of every consumer
on hourly basis, which provides crucial data for demand modelling. However,
for this data to be used in a control system in near real time manner, on-line
transmission is needed. Complex systems including both wired and wireless
communication from a heat meter to the central control system have been pro-
posed (Móczar, Csubák and Várady, 2002; Ye, Zhang and Diao, 2005) and could
be potentially used to achieve this objective. Still, even though it is technically
possible to monitor all the heat meters of all the consumers in an on-line man-
ner (Ye, Zhang and Diao, 2005), this solution is not feasible due to the cost
of transmission devices and transmission itself. Thus, an important aspect of
the study is to verify whether the data from a limited number of constantly
monitored consumers can be used to develop prediction models.

1.2. The objectives of the study

Unlike the previous works on the topic, discussed in detail in Section 2.2, the
paper concentrates on load prediction on the client side - not at a heat source. In
other words, instead of predicting total load in a heat source, being the sum of
heat consumption and heat losses, individual needs of different consumer groups
are modelled. The research is based on newly available heat consumption time
series data from a group of monitored consumers. Moreover, the hypothesis
that averaged long-term time series can be used to partition heat consumers
and develop group prediction models based on short-term time series data col-
lected from monitored consumers is investigated. An important assumption is
that only the data easily available in utility companies are used. In particular,
long-term consumption time series have been developed using the billing data.
Groups of consumers sharing similar average long-term behaviour have been
identified using self-organising maps (SOM), see Haykin (1999). Both models
predicting an average consumption of all the consumers and models answering
the need for consumption prediction at a group level have been constructed.
These models are referred to as global and group models, respectively. The
study summarises previous works on the topic (Grzenda and Macukow, 2006,
2009; Grzenda, 2008). In the previous work, Grzenda and Macukow (2009),
two different techniques, namely modified evolutionary construction of multi-
layer perceptrons (MECoMLP), Grzenda (2008), and multilayer perceptrons
(MLP), Haykin (1999), trained with gradient methods, were used as prediction
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models. The first technique was based on autonomous selection of MLP archi-
tecture, connection weights and a number of standard prediction algorithms via
evolutionary programming (Fogel, 1999) to construct a prediction model. The
MECoMLP follows the results of the previous work devoted to load prediction
in power systems (Grzenda and Macukow, 2002). In the current study, partic-
ular attention is paid to multilayer perceptrons and the analysis of error rates
in case MLP networks are used to construct both group and global models.

The work concentrates on heat consumption modelling in district heating
systems. Nevertheless, the proposed techniques can be adapted to the needs of
other utility networks. More precisely, the main objective of the paper is to pro-
pose and validate the method of constructing consumption prediction models
that satisfies real-life limitations and can be potentially used by different utility
network operators. Equally importantly, the question whether aggregate con-
sumption data provide basis for partitioning consumers relevant for short-term
prediction is answered. Moreover, in order to develop a method for DHS utility
companies, the following system constraints had in particular to be considered:

• a limited number of monitored consumers,
• significant inaccuracy of heat meters influencing the calculation of predic-

tion errors,
• periodically noisy and close to zero consumption time series, caused by

the nature of heat consumption and the local scale of DHS, not found in
typical country or region-wide electrical power systems,

• inertia of space heating systems making the temporal inadequacy of heat
supply partly acceptable.

All these aspects were addressed, when developing the proposed method, too.
The proposed method can be also adapted to the needs of water and gas sup-

ply systems for water and gas consumption modelling, respectively. Moreover,
the same techniques could be applied in electrical power consumption modelling.
Nevertheless, the unique features of district heating systems, which make pre-
cise demand modelling at a consumer group level both especially desired and
more attainable, compared to other systems, are:

• The long latency of the system. Should the heat production be too low, the
time needed to transfer extra heat from the sources to the consumers may
reach several hours. This phenomenon is a particular feature of district
heating systems due to the unique characteristics of heat transfer. Hence,
the need for high precision demand modelling, as potential errors in heat
demand estimation can not be immediately corrected by increasing heat
production.

• Heat meters require the integration of flow and temperature in consumer’s
heat exchanger. Hence, as heat meters are partly electronic devices, they
can be easily extended to transfer the hourly data to the central server.
Thus, the hourly data become available for district heating systems. The
hourly data are usually not available to this extent in many other systems
such as gas and water supply systems, as the latter systems still use many
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non-electronic meters for measuring the consumption.

As a consequence, the proposed technique can be applied to district heating
systems, but also to other utility systems. The development of remote meter
reading systems, observed within last few years, should provide a basis for group-
based prediction in other utility systems, too.

The remainder of the work is organised as follows:

• The modelling background and the differences between source-oriented
and consumer-oriented prediction are discussed in Sectjion 2.

• The way the partitioning of consumers can be performed is described in
Section 3.

• Section 4 outlines the construction of group and global models.
• Prediction errors for both categories of models are compared in Section 5.

The section includes the discussion of the impact of measurement accuracy
on model evaluation.

• Finally, conclusions and the main directions of future work are outlined
in Section 6.

2. The role of demand prediction in hydraulic models

2.1. Hydraulic and thermodynamic models of DHS

Modern DHS (Kato et al., 2008; Park et al., 2009; Sandou et al., 2005; Youen,
2009) can benefit from hydraulic and thermodynamic models. A model rep-
resented by a graph of edges, being an abstraction of pipes, and points, rep-
resenting junctions and consumers, can be used to simulate the behaviour of
a system. The hydraulic and thermodynamic model can provide the data on
temperatures, flows and pressures in any point of the system. An illustration of
a model, depicted on Fig. 1, shows a simple model with one heat source, several
supply pipes marked with solid lines and receive pipes marked with dotted lines.
The heat transported through the piping system is used to supply heat via heat
exchangers (Davidsson and Vernstedt, 2004; Youen, 2009) to internal piping
systems in customers’ buildings. Receive pipes are used to transfer heat carrier,
typically hot water, back to the source, where its temperature is increased again.
The model graph is usually developed basing on the content of a geodatabase
(Arctur and Zeiler, 2004). An increased interest in hydraulic modelling can be
also considered as a way of optimising network operation and exploiting the
benefits of geographical information systems (GIS), Maguire, Kougoumijan and
Smith (2008). An in-depth discussion of the generation of a model graph basing
on geodata can be found in Walski et al. (2004).

What is important, is that even in a middle-size DHS thousands of customers
are supplied with heat through a number of heat exchangers. In a typical layout
one heat exchanger provides heat to one building or several residential buildings.
This means hundreds of consumption nodes exist in a model graph. Assump-
tions regarding heat consumption in these nodes have to be made to perform
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hydraulic and thermodynamic simulations and to optimise heat production and
network settings, in turn.

Figure 1. Network model of a DHS system

To simulate flows, pressures and temperatures, the volume of heat trans-
ferred by a heat exchanger to a consumer and consumed by a consumer has to
be assumed. Once an assumption regarding heat consumption is made, different
control strategies regarding heat production can be applied to the model. By
evaluating their impact on the hydraulic and thermodynamic behaviour of a
system, the best control strategy can be selected.

2.2. Total load vs. individual consumption

2.2.1. The decomposition of heat production

Demand for heat at a heat source is significantly different from the sum of
consumption at consumers’ premises, as heat loss occurs in a piping system
(Park et al., 2009). In general

S
∑

s=1

Qs = QL +

C
∑

c=1

Qc (1)

where Qs stands for the volume of heat produced in source s, QL for heat loss
and Qc denotes heat consumption at consumer c, S ≪ C. The proportion of
QL and total consumption

∑C

c=1 Qc constantly changes and depends not only
on weather conditions and time of day, but also pressure applied at individual
sources. Moreover, the hydraulic and thermodynamical properties of the system
affect heat distribution. What is yet more important, is that the heat produced
at time t reaches the consumer after a delay of even up to several hours. This
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delay depends not only on the distance, but also flow speed and other hydraulic
properties of the system.

In addition, any Qs time series reflects the total consumption of many indi-
vidual consumers. This results in a much smoother profile than an individual
consumption Qc time series, which is largely affected by stochastic heat con-
sumption for hot tap water needs.

2.2.2. Source-side production modelling techniques

Until recently, the only detailed time series data spanning long periods of time
were available for heat sources. Hence, the research on heat demand modelling
has been referring to heat source needs. Numerous techniques have been applied
to predict the load at heat sources. Research has been concentrated on the
direct prediction of the total volume of heat Qs required in every source in a
DHS during each hour. A number of methods have been used for this purpose.
One of the first approaches was to use a neural network model with a two-layer
associative memory using Learning Vector Quantisation to predict the load of
the system (Kashiwagi and Tobi, 1993). A related problem of cooling load
prediction in a district heating and cooling system has been discussed in Sakawa
et al. (1999). The authors have compared the results of load prediction using
a nonlinear auto regressive moving average (NARMA) and different filtering
methods. Another approach is to apply superposition of Box-Jenkins models
based on the correlation analysis of time series (Balate et al., 2007). Still, the
problem of load prediction in DHS is reported to be in general an open issue
(Park et al., 2009; Sandou et al., 2005), as most studies assume that consumers’
demands are given and perfectly known. The works described above are largely
inspired by power load prediction systems. In the latter case, some of the
state-of-the-art solutions were developed for the Polish power system (Siwek
and Osowski, 2009; Siwek et al., 2010). At the same time, the authors notice
that most papers concerning power systems are devoted to large power systems,
usually spanning entire countries (Siwek et al., 2010). Moreover, the prediction
of load in local power systems, which is the scale of all DHS, is reported to be
more challenging, due to high variability of load, which makes the prediction
more difficult (Siwek et al., 2010).

To sum up, in the case of DHS, traditionally, the total volume of heat needed
by consumers was assumed known and was usually experimentally estimated
based on weather conditions and time of day. Moreover, the entire load of the
system observed at a heat source was predicted. This approach refrains from
determining to what extent individual needs of different consumers are satisfied.
As a consequence, the predicted values can not be used for hydraulic calculations
of the distribution system, as the latter calculations require heat consumption
at individual heat exchangers to be provided. The latter requirement is manda-
tory, as flows and temperatures in the system largely depend on the spatial
distribution of the overall load in the network of a DHS.



220 M. GRZENDA

At the same time, extensive studies have shown that hot tap water demand
profiles vary greatly and can differ even in the same region (Lane and Beute,
1996). The differences in normalised peak consumption in different towns can
reach 25% (Lane and Beute, 1996). This phenomenon has been analysed us-
ing real data acquired in municipalities close to Cape Town (Lane and Beute,
1996) and clearly illustrates that different groups of consumers are likely to have
diverse heat demand profiles. Finally, it is important to note that the heat con-
sumption for hot tap water needs occurs in the form of sudden relatively short
peaks, during which this form of heat demand largely exceeds heat consumption
for space heating.

2.2.3. The limitations of source-side prediction

The source-side demand models can be based on:
• The prediction of heat demand based on the investigation of past heat

production time series.
• The calculation of minimal production needed. Such calculations can be

based on input data being the demands of individual consumers and heat
losses calculated through hydraulic simulation.

It is important to note the following limitations of the former approach, i.e.
the source-side demand prediction based on past heat production data:

• The total source production observed in the past, when used to devise
prediction models, affects the prediction models. More precisely, the data
mining models trained with past production will predict insufficient pro-
duction, in case they are trained with too low production observed under
some conditions in the past. Similarly, should the past production be
higher than needed, the prediction models trained with the past excessive
production will predict higher source-side demand than actually occurring.

• Moreover, any attempts to change the pressure applied in a heat source
to a new value, not used in the past under the same weather conditions,
would make the source-side predictions incorrect. For instance, by in-
creasing flow speed in the system, the engineer controlling the system
may reduce the delays in heat transportation while increasing the cost of
pumping. Thus, the peak production could be started later than with
the previous flow speed. Obviously the scale of this change, would not
be known to a data mining model not provided with such historical data.
In other words, the source-side prediction model based on historical heat
production is improper for the investigation of new control strategies. Sim-
ilarly, it could easily recreate the deficiencies of a former control strategy,
e.g., insufficient or excessive heat production. Consequently, it could not
be used to support new control strategy. Therefore, little or no economic
gains from a better control strategy can be expected as long as source-side
prediction models trained with historical source data are used.

• Once the source-side prediction models are trained with source-side data,
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the impact of new large consumers on the systems remains unknown. Their
impact on source-side demand would need to be experimentally observed
over a longer period of time to retrain the models with new source-side
heat production data.

• Consumer-side consumption profiles are mandatory for the modelling of
individual sections of an entire DHS. In particular, by running hydraulic
and thermodynamic simulations, it can be determined that pipe diameters
are insufficient to transport required volume of heat in some sections of
the system - currently or in the future, once new consumers are connected.
Obviously, for such calculations heat demand on a consumer side needs to
be known.

Therefore, the only reliable technique to estimate production needed in a
heat source and validate the control strategy is to perform hydraulic simula-
tions taking into account the demand of individual consumers, their distance
from heat source, and temperatures and pressures set by the system engineer
in every heat source. This corresponds to a standard approach to water supply
system modelling. In the latter case, a hydraulic model is configured with wa-
ter source production settings and daily or weekly consumer demand patterns.
Hydraulic simulations are executed next to verify if water pressures set in the
pumping stations are sufficient to deal with predicted demand of individual wa-
ter consumers (Walski et al., 2004). Hence, production settings can be tuned
to minimise the cost of pumping while ensuring sufficient level of service, i.e.
water pressure in client premises (Bhave and Gupta, 2006; Walski et al., 2004).

In the case of water supply systems, diurnal curves showing daily or weekly
variation of water consumption are created for every consumer group. Such
curves can be easily created for an entire season in water supply systems, as
they are a function of time only. They are used as an input for hydraulic
modelling. As a result, simulated pressures and flows become available for every
part of a water supply system (Bhave and Gupta, 2006; Walski et al., 2004).
Unfortunately, as stated before, heat consumption is related to time of the day
and outdoor temperature. Hence the need for prediction models at consumer
side rather than simple diurnal curves i.e. functions of time of the day and week
only.

To sum up, the required heat production in a heat source should result from
hydraulic and thermodynamic calculations of the DHS taking into account cur-
rent control strategy and predicted consumer needs. As long, as source-side
heat production is estimated based on past production, the potential for sys-
tem optimisation is largely diminished. The consumer-side prediction provides
necessary input to the calculation of source settings-temperature and pressure
set by the system engineer and resulting heat production. So, consumer-side
prediction is not a replacement, but a vital step towards objective calculation
of source-side heat demand and production.
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2.2.4. The requirements for consumer-side prediction

Before client-side prediction models are constructed, key requirements for de-
veloping them should be analysed. Thus, while individual prediction models for
every heat source can be constructed, it is impossible to model every consumer
separately. One of the main reasons is the lack of real measurement data for
most consumers. Hence the need for methods predicting the load for consumers
and taking into account existing constraints. Such predictions could be used as
input data for hydraulic calculations of the network. Flow, pressure and tem-
perature in the DHS network can not be calculated without assumptions on the
volume of heat consumed by the clients via heat exchangers. Consumer-side
prediction could be used instead of rough a priori assumptions based on averag-
ing heat consumption in the entire DHS or a part of it. The remainder of this
paper investigates the way newly available consumer-side data can be used to
build such prediction models and the scale of advantages arising from separate
prediction models for different consumer groups.

3. The identification of consumer groups

Before prediction models serving different groups of consumers can be built,
consumer groups have to be established. Detailed attributes of individual con-
sumers could be used for this process. These could include thermal properties
of buildings, the data on the number of inhabitants and other attributes. How-
ever, even this data would not provide a basis for the entire load profile. One of
the factors that are hardly quantifiable is the individual notion of heat comfort.
Therefore, the actual heat consumption profiles have been used instead. Such
profiles have been obtained from the billing database and normalised. Unfortu-
nately, the billing database contains aggregate consumption only, measured on
a monthly basis. Detailed consumption time series, acquired by a monitoring
system on hourly basis, are available for a limited number of consumers only.

The data sets used in this study come from one of the Polish district heating
systems, operating a medium size system supplying heat to over 1000 heat
exchangers. N = 1109 sales profiles have been obtained from the company
billing data. Every sales profile of a consumer ci, i = 1, . . . , N is represented
by a vector Si = (si,1, . . . , si,12), where si,m denotes the average heat sale to a
consumer i during month m. Only 72 consumers are or were monitored in the
past. Hence, the heat consumption data d̃ih, collected for individual hours h is
available for i = 1, . . . , 72 consumers. As stated before, the cost of maintenance
of a larger consumer monitoring system would be too high for a DHS. Therefore,
the question of whether the available hourly data is sufficient for modelling
consumer groups, should be answered.

Based on the Si, i = 1, . . . , N vectors, normalised profiles S̃i, i = 1, . . . , N
have been obtained. These have been used to build a SOM network. Winner
Takes All with Conscience (CWTA), Haykin (1999), and Neural Gas (NGAS),
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Martinetz, Berkovich and Schulten (1993), algorithms have been used to tune
neuron weights. The two latter algorithms were applied to overcome deficiencies
of the standard WTA algorithm. Among these deficiencies, the overrepresenta-
tion of regions with low input density is not of least importance, Haykin (1999).

As a consequence, a limited number of significant consumer groups was es-
tablished through SOM network investigation. In fact, some 40% of neurons of
the 10x10 lattice represented at most two consumers (Grzenda and Macukow,
2009). In other words, even though the algorithm promoting neuron diversity
was used, it was revealed that the majority of consumers were associated with
8 neurons only (Grzenda and Macukow, 2006), which shows relative concen-
tration of similar consumer demand vectors. In general, the average demand
profiles of these large consumer groups followed inversed outdoor temperature
profile. Nevertheless, the peak consumption is reached by different groups in
different months - January, February, August or December. Moreover, the share
of summer heat consumption in the overall yearly consumption is another fac-
tor differentiating the groups. The details of consumer grouping and identified
consumer groups are discussed in Grzenda and Macukow (2006).

Based on a limited number of large consumer groups identified by 10x10
lattice, the SOM lattice was reduced to a lattice of 5 rows per 5 columns i.e. 25
neurons. The self-organising process was based on the Neural Gas (Martinetz,
Berkovich and Schulten, 1993) algorithm. The algorithm defines the neighbour-

hood function of neuron i and input vector x as G(i, x) = exp(−m(i)
λ

), where
m(i) is the index of a neuron on the sorted list of distances between neurons
and input vector x. The algorithm parameter λ, playing a similar role to neigh-
bourhood radius, and the learning coefficient η were linearly reduced during the
process, as suggested in Osowski (2000). More precisely, λ was set to linearly
decrease from 5 to 0 during the process. Similarly, the learning coefficient of
a SOM neuron η (Haykin, 1999; Osowski, 2000) was linearly decreasing from
initial η0 = 0.1 (Haykin, 1999). Finally, 100 000 iterations of the ordering and
tuning process were performed altogether.

Next, for each neuron j in the lattice, at the end of the network tuning
phase, a winning count Yj has been calculated as follows:

Yj =

N
∑

i=1

eval(i, j) (2)

while

eval(i, j) =

{

1 if ‖ S̃i − wj ‖= mink ‖ S̃i − wk ‖
0 otherwise

. (3)

In this way, neurons representing at least 40 consumers, i.e. Yj ≥ 40, have been

identified. Yj : j = 1, ..., J denotes here the number of demand patterns S̃i that
are the most similar to the weight vector wj in terms of Euclidean distance. As
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a consequence, five neurons matching the condition Yj ≥ 40 were determined.
Moreover, over 80% of consumers were partitioned into Ci, i = 1, . . . , 5 consumer
groups, defined by the corresponding weight vectors wi.

It is worth noticing that there are significant differences in long term demand
profiles of consumer groups identified in this way. In particular, for some of the
consumer groups identified, peak consumption is observed in January, while in
case of other groups the maximum consumption is observed in February or even
August. In the latter case, this clearly suggests that these consumers do not use
heat purchased from DHS for space heating needs.

The numbers of monitored consumers card(Mi) in groups Ci, i = 1, . . . , 5
are 34, 31, 4, 1 and 0, respectively, Mi ⊂ Ci. The monitored consumers consist
of two categories: consumers with transmission devices and consumers with
data loggers, which can be used to collect data for several days, but can not be
remotely read.

Because of the insufficient number of monitored consumers in groups C4

and C5, prediction models for these groups can not be constructed. A global
prediction model has to be used for any consumer not in

⋃m

i=1 Ci, m = 3.
Selection of consumers that should be constantly monitored to provide input
data for demand prediction models was discussed in Grzenda (2009). It has
been shown that from the demand modelling perspective, the existing layout
of monitored consumers does not guarantee that all the important consumer
groups are sufficiently monitored.

4. The construction of prediction models

4.1. Model development

In developing a prediction model providing basis for DHS modelling and its
potential application in near-real time, the following constraints must be con-
sidered:

• Due to high volatility of heat consumption, prediction should be made on
an hourly basis. Longer time intervals could be potentially useful for long-
term sales prediction, but do not provide valuable input for the hydraulic
modelling of DHS.

• Prediction should be made a few hours ahead of the actual consumption
to take into account the time period between the change to production
settings is made and the time the heat carrier with a modified temperature
reaches the most distant consumers.

Two approaches to modelling heat consumption at consumer premises can
be considered:

• a prediction model ξ serving the needs of all the consumers i.e. predict-
ing an average normalised consumption of all consumers. This model is
referred to as a global model,
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• group prediction models µi predicting the averaged normalised consump-
tion of consumers belonging to a group Ci, i = 1, . . . ,m. Every group

model µi is trained with the data from Mi, i = 1, . . . ,m group of monitored
consumers. Moreover, it can take advantage of a normalised consumption
of all consumers, which is also used as a part of its input data.

Finally, once the group and global models are developed, the prediction error
rates can be calculated. The entire process is summarised in Fig. 2.

Figure 2. The construction of group and global models - an overview of the
process

4.2. Data preprocessing

To provide data for model development, for each consumer group Ci, i = 1,
. . . ,m the following data sets have been constructed:

• training and validation group data set composed of ca. 75% of available
data,

• testing group data set composed of the remaining data not used in the
training group data set,

• training and testing global data sets prepared in the same way, but using
the data from all monitored consumers

⋃J

i=1 Mi.
In the case of the DHS being analysed, the heat consumption varies greatly over
the year, depending on weather conditions, the time of the day, day of week and
also the season, as many consumers are hotels or houses offering rooms for rent.
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Thus, in order to ensure unbiased model evaluation and comparison, the data
from different hours and weather conditions (coming from every fourth calendar
day) has been placed in the testing data set.

For every consumer group Ci, i = 1, . . . ,m two test cases have been consid-
ered. In each case r = 50 algorithm runs have been performed. The primary
objective of the first test case was to build and evaluate the prediction models µi

forecasting average heat consumption for consumers of groups Ci, using group

data set i.e. both average consumption acquired from monitored consumers Mi

and average consumption from all monitored consumers
⋃J

i=1 Mi.

Let Ah = avgi∈
⋃

J
j=1

Mi
(d̃ih) and G

j
h = avgi∈Mj

(d̃ih) stand for average heat

consumption of all consumers and consumers of Mj group during hour h, while
h stands for both date and hour index. An assumption has been made that it
may take up to 5 hours for the water to reach a heat consumer. Thus, in both
test cases, Gj

h−6 and Ah−6 are the latest values that can be used for prediction.
Prediction made using more recent data could not be used to obtain required
heat supply at time h.

Thus, each data pattern ph in a group data set contains the following values:
average consumption among group members G

j
h−6, G

j
h−7,G

j
h−8,G

j
h−24, average

consumption by all consumers Ah−6, Ah−7,Ah−8,Ah−24, hour h, outdoor tem-
perature τh, day of week index, time of day status for annotating peak hot tap
water hours, and the value to be predicted G

j
h.

Global models ξi were trained using global data sets. Each data pattern ph
in a global data set contains the following values: average consumption by all
consumers Ah−6, Ah−7, Ah−8, Ah−24, hour h, outdoor temperature τh, day of
week index, time of day status for annotating peak hot tap water hours, and
the value to be predicted Ah.

Global data sets have been used for the second test case aiming to verify
the efficiency of the global prediction model based on averaged data from all
consumers. On the one hand, such a model does not address any specific group
of consumers, on the other hand, by averaging the data from a larger number of
consumers the global model is less likely to be affected by the chaotic behaviour
of individual consumers of a group.

It is worth emphasising that other attributes, e.g., Gj
h−9 can be also included.

However, the number of attributes should be limited in order not to diminish
generalisation capabilities of the models.

The real heat consumption data at monitored consumers from two different
heating seasons, namely the years 2005 and 2007, was used. It was applied
after normalisation as raw time series d̃ih. The data are from January, February,
March and April, i.e. the time when heat was used both for hot tap water
needs and for space heating. Both data coming from data loggers and acquired
through on-line transmission of meter readings is present in the data sets. Due to
the gaps in measurements causing incompleteness of the data, minor differences
in the number of available records ph are observed. The number of available
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measurements d̃ih and resulting ph records placed in individual group data sets
is summarised in Table 1. The number of available measurements is the highest
for group 1 and equal to card({d̃ih : i ∈ M1}) = 20137, which is caused by the
largest number of monitored consumers in the group card(M1) = 34. Finally,
different gaps in the measurement data of every group result in a group of global
models ξi, i = 1, . . . ,m being developed, as shown in Fig. 2.

It is worth emphasising that inevitable incompleteness of data is a common
issue when dealing with measurement data. Two factors contribute to the prob-
lem: sudden failures of measurement devices and data transmission problems.

Table 1. The number of data patterns ph in group data sets

Group i card(Mi) card({d̃ih : i ∈ Mi}) No. of ph records for group i

1 34 20137 1663
2 31 18217 1683
3 4 1918 1536

5. Results

5.1. Comparison of absolute errors for group and global models

In all the cases, group and global prediction models in the form of MLP networks
have been trained using Levenberg-Marquardt (LVM) algorithm. The number
of neurons in hidden layers has been manually set. The group models have
been trained on group data sets, while the global models on the global data
sets, as defined in Section 4.2. The resulting global and group MLP models
are denoted by ξi and µi, respectively. E() stands for mean absolute error
(MAE) calculated based on r = 50 separate LVM runs. The original E() rate
was largely affected by individual algorithm runs trapped in local optima with
extremely high error rates. Thus, the reported E() rate has been calculated
without considering the outliers, in order to reliably compare average error rates.
Average error rates E() calculated on testing data sets have been summarised
in Table 2. All the group models were tested on the testing group data sets.
The global models were provided with the testing global data sets constructed
for exactly the same sequence of days as these contained in testing group data
sets. As a consequence, the input of global models in the testing phase was the
averaged data from all monitored consumers. The output of both group and
global models was compared with the averaged group consumption observed
at the testing time points. Hence, the error rates shown in Tables 2 and 3
are calculated by comparing the output of individual prediction models with
the actual average behaviour of a group. In particular, the output of global
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Table 2. Results summary

MAE errors

Group card(Ci) card(Mi) E(ξi) E(µi)

1 363 34 0.01732 0.00961
2 339 31 0.01872 0.01206
3 136 4 0.02855 0.02426

Avg.err. n.a. n.a. 0.02153 0.01531

models trained with the averaged data from all consumers is compared with
the actual heat consumption in every group. Hence, the benefits arising from
training the global models with much more smooth averaged data collected from
all consumers are compared with the advantages of training a number of group
models with much more noisy data, but coming from the respective group of
consumers only.

The average error rate E(µi) = 0.01531 of the group models on the test-
ing data set is on average 28.9% lower than the error rate E(ξi) = 0.02153 of
the global models tested on the same set of time points. This clearly shows
the potential of group prediction models. At the same time, the error rate of
a group prediction model depends greatly on the number of monitored con-
sumers. The higher the number of monitored consumers, the lower the error
rate of a model built using their data. This confirms previous results obtained
with MECoMLP method (Grzenda and Macukow, 2009) and MLP networks.
In particular, the error rate of the group models trained with evolutionary pro-
gramming was lower than the corresponding error of the global models trained
using the same MECoMLP technique (Grzenda and Macukow, 2009).

For the two largest groups, the improvement, measured as a difference be-
tween E(µi) and E(ξi), is even larger and equal to 39.9% of the latter MAE error
rate. At the same time, in Grzenda and Macukow (2009) it was observed that
the average error rate obtained for the training data set E(αi) was lower by 22%
than E(µi), αi and µi standing for global and group hybrid prediction model
trained with MECoMLP technique, respectively. Similarly, the error rate of the
MLP-based models trained with a gradient method, measured on the training
data sets, E(ξi), was lower by 29% than E(µi) (Grzenda and Macukow, 2009).
In other words, in general it is easier to train a global prediction model using the
data from all consumers than a group prediction model based on the data com-
ing from a lower number of consumers. Still, group prediction models produce
lower error rates for consumers from their groups.

To sum up, the results of simulations show that averaged long-term time
series can be successfully used to identify consumer groups suitable for prediction
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purposes. Prediction models constructed for such consumer groups produced
significantly lower error rates on the testing data sets than the global prediction
models. This improvement is even larger when the two biggest consumer groups
Ci, i = 1, 2 are considered. Nevertheless, an analysis of percentage errors is
needed to evaluate the practical merits of the models.

5.2. Investigation of percentage errors

In addition to mean absolute errors reported in Section 5.1 an investigation of
percentage errors was made. The following factors were considered:

• The accuracy of the measurement data used for this study. Heat consump-
tion is calculated in heat meters as an integrated multiplication of the flow
rate and the temperature difference (Kusui and Nagai, 1990). Hence, the
normative error rate resulting from integrating three underlying measure-
ments is significant and equal to ±7.5% of reported value. In some cases
it is believed to exceed even this rate due to long periods of near-zero
flow causing sedimentation problems. This rate can not be neglected, as
it definitely exceeds typical error rates e.g. for water flow measurements,
which can be as low as ±2%.

• In hydraulic modelling of utility networks, a common acceptance criterion
for the model calibration process is defined as an acceptable error rate in
a specified percentage of cases. For instance, in the case of water distri-
bution systems, one of the criteria for accepting a hydraulic model is that
95% of field test measurements should be within ±0.75m or ±7.5% of the
maximum head loss across the system, whichever is greater (Walski et al.,
2004). The error rates for 100% and 85% of field test measurements are
expected not to exceed ±15% and ±5%, respectively (Walski et al., 2004).
These criteria accept the inevitable random behaviour of system users that
may affect the system hydraulics. In the case of DHS and heat consump-
tion, as stated in Seciton 2.2, a largely stochastic heat consumption for
hot tap water has to be considered.

• Taking into account a limited number of monitored consumers in a group
card(Mj), averaged heat consumption G

j
h = avgi∈Mj

(d̃ih) may temporarily
be equal to zero.

• Heat meters have been polled regularly but at slightly different times in
a round robin manner. Hence, the hourly consumption time series, which
provides the basis for this study, is affected by time differences of the
underlying raw heat consumption data.

Therefore, first a formal algorithm for calculating percentage error rates in
view of measurement errors EMAPE is described in Algorithm. 1. The algorithm
is an extension of standard Mean Absolute Percentage Error (MAPE), defined

as: MAPE =
∑n

i=1
|yi−di|

di
. In particular, MAPE = EMAPE(ǫa, ǫp, d, y); ǫa =

0, ǫp = 0. The main difference is that in the case of ǫa > 0 absolute measurement
errors are taken into account, which makes it possible to calculate error rates
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for di = 0 at the same time. Moreover, ǫp > 0 can be used to address the
relative accuracy of the measurements. As stated before, heat consumption
measurements are affected by a large relative measurement error, too large to
be neglected when dealing with prediction error rates.

Then, investigation of percentage error rate, as a function of the percentage
of time steps considered in the evaluation, is made. The latter algorithm is
formally defined as Algorithm 2. It follows the idea of model calibration ac-
ceptance criteria, cited above. In other words, instead of calculating a single
MAPE rate calculated for an entire testing set, a number of MAPE error rates
are calculated to show the MAPE error rates as a function of the percentage of
time steps considered.

Hence, by investigating α < 100 one can determine whether a prediction
model generates significant errors most of the time or in a limited number of
cases. Moreover, the latency of a DHS system and central heating systems in
consumers’ premises makes short-term problems more acceptable than in the
case of electrical power or water supply systems. Simply, due to thermal inertia
of the buildings temporarily insufficient heat supply may not negatively affect
the heat comfort of the residents. Finally, as stated before, the proposed method
follows a common hydraulic modelling practice, i.e. setting the boundary limits
that should be met by 90% or 95% of simulated time steps rather than by 100%
of cases.

Input: d = [d1, . . . , dn] - a vector of expected demand, y = [y1, . . . , yn] -
demand prediction, ǫp - allowed percentage error, ǫa - allowed
absolute error

Result: EMAPE(ǫa, ǫp, d, y)
begin

EMAPE(ǫa, ǫp, d, y)=0;
for i = 1, . . . , n do

dmax = max(di × (1 + 0.01× ǫp), di + ǫa);
dmin = min(di × (1− 0.01× ǫp), di − ǫa);
if dmax ≤ yi then

EMAPE(ǫa, ǫp, d, y) = EMAPE(ǫa, ǫp, d, y) +
yi−dmax

dmax

end

if yi ≤ dmin then

EMAPE(ǫa, ǫp, d, y) = EMAPE(ǫa, ǫp, d, y) +
dmin−yi

dmin
;

end

end

return
EMAPE(ǫa,ǫp,d,y)

n
;

end

Algorithm 1: The calculation of percentage error rate considering limited
accuracy of measurement data
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Input: d = [d1, . . . , dn] - a vector of expected demand, y = [y1, . . . , yn] -
demand prediction, ǫp - allowed percentage error, ǫa - allowed
absolute error, α - the percentage of cases considered in
calculating error rates

Result: Eα
MAPE(ǫa, ǫp, d, y)

begin
ds, ys = sortvectors(d, y,MAE(d, y));
nα = ⌈n× α× 0.01⌉ ;
dα = ds1, . . . , d

s
nα

yα = ys1, . . . , y
s
nα

return EMAPE(ǫa, ǫp, dα, yα);
end

Algorithm 2: The calculation of percentage error rate for α% of time steps

Algorithm 2 describes the way the calculations used for the latter problem
were made. The averaged MAPE error rates Eα

MAPE(ǫa, ǫp, d, y) are reported
for every consumer group in Table 3.

In addition, two figures illustrate the averaged Eα
MAPE(ǫa, ǫp, d, y) error rate

as a function of α. In all cases ǫp = 7.5, ǫa = 0.00005 were applied and r = 50

algorithm runs were performed to provide averaged error rates. EMAPE() will

stand for E100
MAPE(ǫa, ǫp, d, y).

Fig. 3 shows an averaged error rate as a function of α for group and global
models developed in 50 algorithm runs for group 2. The averaged error rate
Eα

MAPE(ǫa, ǫp, d, y) is equal to 7.69% for α = 100, i.e. when all time steps are
considered. For 95% of time steps this error is equal to 5.54%.

A similar investigation was performed for group 3. Only four consumers are
monitored in this group. Thus, even averaged heat consumption is more likely
to go down to zero or near-zero values, which is actually observed in the data.
As a consequence, large percentage errors are observed. In the latter case, by
treating the error rate as a function of α, a significant insight into the error
rates can be provided. While for group models E100

MAPE(ǫa, ǫp, d, y) = 5931.34%,

Table 3. Eα
MAPE(ǫa, ǫp, d, y) error rates - group and global models

Group models Global models

Group index α = 100 α = 95 α = 90 α = 100 α = 95 α = 90

1 9.63 5.74 4.47 22.66 14.48 11.20
2 7.69 5.54 4.33 13.20 11.09 9.61
3 5931.34 71.30 14.11 7542.31 209.10 16.52
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Figure 3. MAPE error rates for α% of time steps - consumer group 2

E90
MAPE(ǫa, ǫp, d, y) = 14.11%. In fact, the error rate curves visualised in Figs.

3 and 4 show the percentage of time α, for which the error rate of k% can
be expected. In the case of heat prediction models, this turns out to be more
informative than a single value, reported for α = 100%. The reason is the fact
that heat consumption, unlike power consumption, is more likely to take zero
or near-zero values. Moreover, DHS typically spans a few hundred or thousands
consumers. While a single heat consumer group may contain just a few hundred
consumers, power load prediction is usually developed for large systems used by
hundreds of thousands consumers, which results in much more smooth non-zero
averaged consumption profiles. The prediction at a smaller scale of individual
cities, which is the scale typical for DHS, has been reported more challenging
also in the case of power systems (Siwek et al., 2010).

Still, no matter whether group or global models are applied, the error rate
for the third consumer group is significant. The limited number of monitored
consumers in the group contributes to the problem. On the one hand, this group
has its own long-term consumption profile. On the other hand, insufficient num-
ber of short-term time series for the group is available. As a consequence, the
prediction errors can not be accepted for this group. Moreover, group model
provides similar prediction accuracy as a global model. Hence, in the case of
consumer groups not monitored by a sufficient number of devices, a global model
can be used instead. Still, the only way to obtain more accurate demand pre-
dictions for significant groups of consumers is to install additional transmission
devices capturing their unique short-term consumption time series. The impact
of the number of monitored consumers on prediction error has been investigated
in a greater detail in Grzenda (2009).

Finally, graphical comparison of real heat consumption and prediction for
the consumer groups C1 and C2 was made. High prediction accuracy can be
observed most of the time. Relatively significant prediction errors occur only
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Figure 4. MAPE error rates for α% of time steps - consumer group 3

during some hours of high volatility periods present in the last part of the testing
set. For clarity reasons, the results for two sequences of testing days are shown.
First of all, in Figs. 5 and 6 the results for the period of limited demand volatility
are shown. It can be observed that prediction made by group models µ1 and µ2

matches with relatively high accuracy the actual consumption. Moreover, group
models predict the actual consumption of their groups more precisely than the
global models. For instance, this can be observed during the second and third
testing days shown in Fig. 5.
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Figure 5. Prediction - consumer group C1 - the first subset of testing days

To provide a better illustration of the problem, a sequence of testing days
was also selected to visualise some days with relatively high volatility of heat
consumption, which results in lower accuracy of prediction. Fig. 7 shows the
actual heat consumption and the averaged prediction produced by group and
global models in the case of C1 group for this subset of testing days. Fig. 8
shows the same comparison made for the same set of time points and C2 group.
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Figure 6. Prediction - consumer group C2 - the first subset of testing days
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Figure 7. Prediction - consumer group C1 - the second subset of testing days

It should be noted that while the first group decreased heat consumption
in the second half of the analysed period, as visualised in Fig. 7, the opposite
tendency can be observed in Fig. 8, i.e., in the case of C2 group. Whereas
global models predict an averaged behaviour of all consumers, the group models
captured the unique tendencies in their groups. In Fig. 7 it can be observed
that the global prediction ξ1 is reaching 0.15 and is largely higher during the
second half of the testing period than the actual consumption of the group at
these days, which is at this time approximately in the range [0.08,0.12]. While
Fig. 7 shows the global prediction exceeding the actual group needs, the results
visualised in Fig. 8 illustrate the opposite tendency occurring for group 2. In
the latter case the prediction delivered by global model is in the range [0.1,0.15]
and is significantly lower than the actual consumption, which at the same time
remains in the range [0.1,0.25]. In both cases, the group prediction models
µ1 and µ2 forecast the heat consumption of the corresponding groups more
accurately.

However, at some periods a global model may be more accurate than its
group counterpart. This may be expected in the periods of limited diversity
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between consumer groups. Nevertheless, the summary results shown in Table 3
show the overall superiority of group models over global models. More precisely,
for the first group EMAPE() of group prediction µ1 is lower by 57% than the
corresponding rate for global model ξ1. In the case of the second group, the
percentage error EMAPE() of group prediction µ2 is lower by 41% than the
error made by global models ξ2.
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Figure 8. Prediction - consumer group C2 - the second subset of testing days

5.3. Comparison of percentage error measures

Finally, the comparison of error rates calculated with the proposed Eα
MAPE()

function against other norm-based error rates was made. The comparison was
performed using the same neural networks and data sets as in the preceding

part. Two error functions following the same pattern i.e. EMAPE() = ‖y−d‖
‖d‖

were used. As before, d = [d1, . . . , dn] denotes a vector of expected demand
and y = [y1, . . . , yn] - demand prediction. The first error function was de-

fined as EMAPE1
() = ‖y−d‖1

‖d‖1

, i.e. it was based on the L1 norm. In addition,

EMAPE2
() = ‖y−d‖2

‖d‖2

, based on the Euclidean norm, was included. In the case

of the error function Eα
MAPE(ǫa, ǫp, d, y), defined in Algorithm 2, ǫp, ǫa were set

to the same values as in Section 5.2, i.e. ǫp = 7.5 and ǫa = 0.00005, respectively.

The same predicted time series y as these illustrated in Figs. 5, 6, 7, and
8 were used. More precisely, as before, for every consumer group, and model
category (group or global), the prediction y was generated by averaging the pre-
diction made by individual MLP-based models, created in LVM-based training
sessions. Each of the error functions Eα

MAPE(), EMAPE1
() and EMAPE2

() was
calculated using prediction y obtained on the testing data sets and the actual
consumption d. The results of these calculations are summarised in Table 4.

Moreover, α = 100 was used, i.e. E100
MAPE is reported. Hence, all the avail-

able testing time points were considered in the calculations of all the error
functions. As before, it can be observed that the error rates attained with
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Table 4. Comparison of error measures - group and global models

Group models Global models

Group E
100

MAPE() EMAPE1
EMAPE2

E
100

MAPE() EMAPE1
EMAPE2

1 8.48 0.1130 0.1417 22.033 0.2138 0.2795

2 6.38 0.1195 0.1617 12.61 0.2017 0.2718

3 5791.06 0.2510 0.3245 7535.41 0.3063 0.3829

Eα
MAPE() function are lower for the group models than for the global models.

This tendency is confirmed by the remaining error functions. Both in the case
of EMAPE1

() and EMAPE2
(), the error rates are lower for the group models

than for the global models. For instance, in the case of the first group and its
group-based prediction EMAPE1

() = 0.1130, which is less than the correspond-
ing value for the global prediction equal to 0.2138. This superiority of group
models is observed for all the groups. However, the highest difference is observed
for the two largest groups, in terms of the number of monitored consumers. In
the latter case, the reduction of both EMAPE1

() and EMAPE2
() exceeds 40%,

which corresponds to the results for MAE rates, reported in Section 5.1. This
reduction is significantly lower for group 3, where the reduction of EMAPE1

()
error is equal to 1− 0.2510

0.3063 = 0.19 of the global error rate. Also this fact confirms
previous discussion and shows the positive impact of the number of monitored
consumers on group prediction accuracy.

What should be emphasised is that the proposed error function Eα
MAPE()

is based on the sum of individual error proportions, which makes it much more
susceptible to individual, but very high percentage error rates. It can be ob-
served that this impact is much lower in the case of EMAPE1

and EMAPE2
rates.

On the other hand, by setting α < 100 in Eα
MAPE() one can control the number

of considered time points and observe whether high overall error rate is caused
by a limited number of problematic cases or a limited prediction accuracy for
the majority of cases.

To sum up, the results attained with other error functions based on Manhat-
tan and Euclidean norms confirm the superiority of the group models created
with the algorithm proposed in this study. The impact of errors made by the
prediction models at individual time points on the error rates differs. The de-
cisions on the possible use of each of the error functions can be made by an
engineer in charge of heat production.

5.4. Global models with group input

Finally, one more series of experiments was performed. The objective was to
verify the potential benefits of training global models with the entire avail-
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Table 5. Summary of results - the hybrid approach

MAE errors

Group card(Ci) card(Mi) E(ξi) E(µi)

1 363 34 0.01186 0.00961
2 359 31 0.01498 0.01206
3 136 4 0.02737 0.02426

Avg.err. n.a. n.a. 0.01807 0.01531

able data set, i.e. with the global data set, but performing prediction with a
group data. The global models were trained as before, but when prediction
was performed, the MLP-based global models were supplied with an average
consumption among group members G

j
h−6, G

j
h−7,G

j
h−8,G

j
h−24, instead of an

average consumption by all consumers Ah−6, Ah−7,Ah−8,Ah−24. In this way,
a global model could potentially benefit from the most recent data describing
group behaviour. This approach will be referred to as a hybrid approach in the
remainder of the work. The results of this series of experiments are summarised
in Table 5.

The results obtained in the hybrid approach are better than the results of
using a global model with global data Ah−6, Ah−7,Ah−8,Ah−24 as input. A
reduction of 16% of MAE error rate is observed. Nevertheless, group models
provide even lower error rates. A hybrid approach might, though, be a promising
alternative to group models in the periods of relatively similar behaviour of
different consumer groups.

6. Summary

Load prediction techniques for DHS have traditionally concentrated on heat
sources. With the advent of low-cost monitoring systems, detailed data describ-
ing short-term consumer behaviour become available. This helps to predict heat
consumption on the consumer side, which significantly differs from source-side
prediction. The work proposes the way such prediction models can be con-
structed and used to model heat consumption by different consumers.

It has been shown that aggregated long-term time series, when used for
SOM network construction, can be successfully applied to identify groups of
consumers relevant for short term prediction. The groups identified in this way
share similar short term demand profiles. Therefore, it has been possible to
obtain more accurate predictions than those produced by global models.

Group prediction models were successfully used to answer the need for pre-
diction at a consumer rather than at a heat source level. At the same time, the
method of building consumer groups and their own prediction models has been
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proposed for a real data set from one of the DHS. For both group and global
models absolute and percentage errors have been investigated. Particular atten-
tion has been paid to the latter category of errors in view of common hydraulic
calibration processes. Unlike most studies, we analysed, no single error rate,
but MAPE rates as functions of the percentage of time steps. This provides an
insight into the distribution of percentage error rates calculated for individual
time steps and can be used to evaluate the quality of a model.

An improved accuracy of group models when compared to global models has
been obtained in spite of using the data from a lower number of consumers for
every group model than in the case of a global model. What is important, little
or no extra investment is required to obtain the data needed for the proposed
method. Finally, consumer-side prediction provides data necessary for hydraulic
calculations of DHS.

In the future, further studies and simulations aiming to investigate the results
of applying the group prediction models to hydraulic modelling are planned.
One of the objectives is the development of a control strategy based on dynamic
modelling with different scenarios of heat source settings i.e. temperature and
pressure settings. Another question to be answered is whether a global model or
a hybrid approach can be selected in a self-adaptive manner to deliver in some
periods even more accurate prediction than the group-based one.
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