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Abstract: The article discusses definitions of vector space for
variance increment and standard deviation increment, as well as def-
inition of scalar product for variance increment. This justifies using
a vector calculus for variance increment and allows for emplyoing
vector calculus methods for variance recalculated into variance in-
crement. The paper also presents a practical example of combining
images from sector-scan sonar based on comparison made between
local increments of variance.
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1. Introduction

Defining vectors in space allows for creating the coordinate system, using which
one may determine the coordinates of all the points in space relative to a chosen
point of reference. Coordinates are numbers by which vectors in the coordinate
system should be multiplied so that after addition one obtains a vector defining
the translation of the point from the coordinate origin to the point determined
by the coordinates. The sets of rational, real and complex numbers are used for
the description of vectors.

The basic problem, whose solution will be searched in this paper, is to take
into account data inaccuracies in a vector description. These inaccuracies result
in inaccuracies of point position in a vector space. This requires the appropriate
definitions of elements in vector space: vectors and scalars. It is necessary to
find numbers which will include the description of uncertainty and, on the other
hand, will meet Abelian group axioms (for the numbers describing vectors),
field axioms (for the numbers describing scalars) and vector space axioms. The
inaccuracy can be included in additional components of the numbers used for
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the vector description. The use of these components is the subject of this paper
and it will be further presented by examples.

Inaccuracy of the position may result from measurement errors, computa-
tional errors, data corruption due to lossy compression and many other factors.
It is often possible to estimate inaccuracy, what theoretically allows to take it
into account in the results obtained on the basis of calculations. In the case of
vector calculus, it is necessary to change the notation of vector by introducing
numbers together with information about inaccuracy of value determined by a
given number. Such numbers must have at least two components since they
must represent a value and its inaccuracy at the same time.

As far as vector calculus is concerned, there are two possibilities of intro-
ducing numbers defining data inaccuracy: as numbers defining coordinates and
vectors, or only vectors. In the former case, these numbers must be scalars in
vector calculus and therefore must satisfy all the field axioms. There is only one
set of numbers that does so, namely the set of complex numbers. Unfortunately,
this is a set of multi-component numbers that satisfy field axioms. For the pur-
pose of addition, the set of vectors must satisfy all the axioms of Abelian group.
It is not necessary to define the multiplication of vectors, which considerably
facilitates finding the right set of numbers.

The sets of numbers defining data inaccuracy are found in fuzzy arithmetic
and interval arithmetic. Nevertheless, a problem arises, namely numbers be-
longing to the aforementioned methods of arithmetic are in a different group of
numbers than those used in vector calculus. Vector is a difference between the
coordinates of two points. Hence, numbers defining the vector must be directed
numbers, i.e. not defining a given value in a direct way, but just the difference
between the value and a given point of reference. Values that define fuzzy arith-
metic numbers may be directed numbers but there is some inaccuracy involved
- always expressed in an absolute way. Negative inaccuracies are inadmissible.
Support of a fuzzy set must always be positive. Just as in the case of interval
arithmetic, where the width of interval must always be positive. Negative values
are inadmissible.

Axioms of Abelian group for addition are formulated in such a way that in
order to satisfy them, there must be a symmetry relative to a neutral element.
If any parameter defining the number is positive, there must be a possibility
for it to be negative. This stems from the way of defining the opposite number
that is different from fuzzy arithmetic and interval arithmetic. If the support of
fuzzy number is positive, it should be assumed that it can also be negative, this
being in contradiction with fuzzy arithmetic principles. Arithmetic of directed
and arithmetic of absolute numbers have various practical applications, which
may be noticed while interpreting the result of subtraction. In fuzzy arithmetic,
fuzziness is subject to increase as a result of subtraction, and the result "informs"
about its inaccuracy. As for arithmetic in accordance with the axioms of Abelian
group, the subtraction result will "inform" about difference between inaccuracies
of the numbers subtracted, and not about the inaccuracy of the result itself.
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As far as fuzzy arithmetic is concerned, researchers attempted to make it
conforming with the axioms of the aforementioned group, e.g. Mareš (1977,
1989). He used probability distributions as fuzzy numbers, and then adopted
convolution as addition and finally created convolution representation. Never-
theless, a problem arises, namely there is no accordance with fuzzy arithmetic.
As a result, the definition of a set of fuzzy numbers was provided (the definition
of the opposite element was in accordance with fuzzy arithmetic but not with
the axioms of the group, Mareš, 1994 . Similarly, there is a problem with clas-
sifying other sets of numbers that satisfy Abelian group axioms (such as, e.g.
directed fuzzy numbers proposed by Kosiński and Prokopowicz, 2004 into fuzzy
arithmetic.

As far as interval arithmetic is concerned, Kaucher (1973, 1980) suggested
extended interval arithmetic which, by definition, satisfies all the axioms of the
Abelian group. Therefore, it can be employed for defining vectors in vector
spaces.

Since numbers used for defining vectors must be absolute, one must seek for
proper sets of numbers. As a rule, such sets are found within a given arithmetic
that may be referred to as incremental arithmetic, in the case of which numbers
do not define the real value directly, but as a difference (increment) between
a given level of reference and the level measured. Unlike fuzzy arithmetic and
classical interval arithmetic, the primary aim of incremental arithmetic is not to
determine the inaccuracy of the result obtained, but to analyze this inaccuracy
in order to make comparisons, examine variability, forecast, etc. Theoretically,
it is possible to determine the inaccuracy of results. In practice, this is as a rule
pointless as it is much easier to employ fuzzy arithmetic or interval arithmetic.
The only exception is vector calculus in the case of which one cannot use absolute
numbers for formal reasons (axioms are not satisfied).

This distinction of applications results from the nature of subtraction op-
erations. In a typical subtraction used in fuzzy and interval arithmetic the
inaccuracy of information increases. For example, if there is some amount of
apples in a big basket, then this amount can be more or less precisely deter-
mined on the basis of human estimation. One can assign some inaccuracy to
this estimation. Similarly, after taking some apples from the big basket and
putting them into a small one, it is possible to estimate the amount of apples
in the small basket and to determine inaccuracy of this estimation. One can
subtract both estimated amounts to find the amount of apples left in the big
basket. However, the inaccuracy estimates should be added, because "the lack of
knowledge" concerning apples in the big basket increased due to the summation
of "uncertainties" originating from two inaccuracy estimates.

In some cases one can deal with a comparative task. For example, the
amount of apples could be estimated using different methods for the same bas-
ket. Then, the result of subtraction presents the difference between estimation
methods. In this case, when inaccuracies have been estimated each time, then
the difference of inaccuracies needs to be calculated. It will enable evaluation of
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the correctness of inaccuracies estimation for both methods. The "minus" sign
of the difference shows which inaccuracy is greater.

One can also use the subtraction of inaccuracies to predict inaccuracies. For
example, if elements of a particular size are produced on a production line, then
on the basis of data concerning inaccuracies of production one can determine if
the inaccuracy increases or decreases. This makes it possible to predict, as an
example, when the error limit of inaccuracies for elements would be exceeded,
and to plan an adjustment of production tools.

To describe inaccuracies one can use, in paritcular, the distribution or pa-
rameters defining it, like mean value, standard deviation, variance or range.
The mean and the variance (standard deviation) are associated, therefore they
can be noted as ordered pairs:

∀η ∈ R, σ2 ∈ R
+ :

(
η;σ2

)
. (1)

This pair consists of two numbers; the first of them is the relative one and
the second the absolute number. This is the reason why this ordered pair can
not be used for the vector description. A vector has to be described by two
relative numbers. It is possible to convert the description from absolute to
relative numbers according to the method given in Zaremba (1918). Having the
given absolute number a one combines it with any absolute number b to make
a pair. In such a manner the following ordered pair is created:

∀a, b ∈ R
+ : (a; b) . (2)

As an example, the measurement of temperature presented in Kelvin degrees
is performed using absolute numbers. The lowest value is zero, and there are
not lower values at all. If the measured temperature of 227.15oK is given, then
one can combine it with any other absolute value, for example with the freezing
point of water, which is 237.15oK. In this way one can obtain the ordered pair
(227.15; 237.15)

oK. One can take any of these values as the reference point and
then, if it is possible to calculate the difference between them, a single signed
number can be used instead of the ordered pair. If in the above example the
value 237.15oK is taken as the reference point, then as the result of subtraction
the value −10 is created. However, this value is not calculated in relation to the
absolute zero, but is relative to the reference point 237.15oK.

Thanks to the fact that the relative number is written as two absolute num-
bers, all operations performed on absolute numbers can be transferred to rel-
ative numbers. All operations are performed on absolute numbers. One can
present addition, subtraction, multiplication and division of relative numbers
using arithmetic operations on absolute numbers. For example, addition can be
written as follows:

∀a, b, c, d ∈ R
+ : {(a; b) + (c; d) ≡ (a+ c; b+ d)} . (3)
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Moreover, it is possible to define the inverse element for a relative number:

− (a; b) = (b; a) . (4)

The inversion is equivalent to the change of the number sign. This operation
is possible only for those numbers, which can have the sign. It is impossible for
absolute numbers, because they have no sign. The change of the number sign
enables performing subtraction using the addition operation:

∀a, b, c, d ∈ R
+ : {(a; b)− (c; d) ≡ (a; b) + [− (c; d)]} . (5)

The so defined subtraction operation is always executable (due to the fact
that the addition of absolute numbers can be performed always). This makes
difference in comparison with the subtraction of absolute numbers, which is not
executable for some cases.

Similarly, one can present the ordered pair
(
η;σ2

)
as the relative number:

∀ηa, ηb ∈ R ∀σ2
a, σ

2
b ∈ R

+ :
((
ηa;σ

2
a

)
;
(
ηb;σ

2
b

))
. (6)

The way in which the values ηa, ηb, σ2
a and σ2

b are calculated, depends on
the nature of data. In the case of image processing these values are calculated
for images pixels. The value of the "black & white" image pixel depends on
the light intensity associated with a relevant light-sensitive element. The most
frequent solution is to assign to this element an integer number from the interval
0-255. However, this number is not the measure of light intensity, because in the
registration process it is changed during complex operations aimed to ensure a
particular visual impression of the whole of the photo. Therefore, pixel values
are dimensionless.

In the image processing the average value and the standard deviation are
used as so called amplitude features of the image. In such a case the average
value is calculated according to the formula (Pratt, 2001):

ηj,k =
1

W 2

w∑

l=−w

w∑

o=−w

Pj+l,k+o , (7)

where W = 2w + 1, Pj+l,k+o is the pixel of an image, for which the average
value is calculated, and ηj,k is this calculated value.

The average value is calculated for the square block of pixel neighbors. The
size of this block is W , and for the formula mentioned above it has to be an odd
value.

The standard deviation is calculates according to the formula (Pratt, 2001):

σj,k =
1

W

√
√
√
√

w∑

l=−w

w∑

o=−w

[Pj+l,k+o − ηj+l,k+o]
2
. (8)



150 M. BORAWSKI

In such a way two tables are constructed, ηj,k for average values, and σj,k

for standard deviations. The one separate random variable Xj,k is associated
with every pair of values (ηj,k;σj,k). In image processing this variable is mostly
the discrete random variable taking the values x = 0, 1, . . . , 255. Probabilities
P (Xj,k = x) of occurrence of particular random variable values one can find on
the basis of the pixel block assigned to this variable. Usually the main goal
of image processing is the analysis or modification of one selected image, and
neglecting all the other. Due to this the pixel block is treated as a separate and
closed population.

The average value, calculated in the way mentioned above, determines the
local level of pixel values, and the standard deviation determines the local vari-
ability of an image. They can be used in further calculations, but the basic
problem is that many methods require the use of relative numbers. Then one
can use the relative number

((
ηX ;σ2

X

)
;
(
ηY ;σ

2
Y

))
associated with two random

variables X and Y . One of these random variables, for example X , is the ran-
dom variable associated with some pixel block, and another one is the reference
random variable. The reference random variable can be chosen freely, as in the
case of selection of the reference point for measurements of temperature.

The ordered pair formula is only some way of representing relative numbers.
It determines indirectly some relative number. One can describe the relative
number directly as an increment in relation to the reference point, i.e. the
difference between both components of that number

((
ηX ;σ2

X

)
;
(
ηY ;σ

2
Y

))
:

((
ηX ;σ2

X

)
;
(
ηY ;σ

2
Y

))
≡

(
ηX ;σ2

X

)
−
(
ηY ;σ

2
Y

)
=

(
∆η; ∆σ2

)
. (9)

The subtraction used above is the subtraction based on the inverse element
of the group:

f − g ≡ f + (−g) , (10)

where-g is the inverse element for g fulfilling the condition:

g + (−g) = e , (11)

where e is the neutral element for addition.
In the case of ordered pair

(
ηY ;σ

2
Y

)
, the calculated inverse element has

the form (−ηY ; −σ2
Y

)
. −σ2

Y is not variance, therefore the increment of vari-
ance ∆σ2 is not variance itself.

The increment is always the difference of two absolute numbers. Therefore, it
always concerns two values. The increment of variance represents the difference
of two variances, i.e. it illustrates how variances of two random variables differ
(and which one is greater). So, the increment of variance concerns not only one
random variable, but two random variables. One of them can be treated as the
reference variable. The positive value of the increment of variance means that
the random variable has greater variance value than the reference variable, and
the negative value means the opposite case.
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The variance is associated with the average value and, similarly, the in-
crement of variance is associated with the increment of standard deviation.
Therefore they also can be treated as the ordered pair:

∀∆η,∆σ2 ∈ R :
(
∆η; ∆σ2

)
. (12)

The way of addition of average values and variances corresponds to the
behavior of these parameters in the addition of independent random variables.
One can assume that the increment of variance is a relative number, and so it
can have negative values. The relativity of average value increment and variance
increment results in the relativity of the ordered pair that will be treated as a
number belonging to set L∆σ2 . Addition in this set may be defined as follows:

∀a, b ∈ L∆σ2 :
{
a+ b ≡

(
∆ηa +∆ηb; ∆σ2

a +∆σ2
b

)}
. (13)

Element (0; 0) is neutral, and element
(
−∆η;−∆σ2

)
is the opposite of ele-

ment
(
∆η; ∆σ2

)
. The set L∆σ2 together with addition forms an Abelian group.

Taking the definition of addition into account, it is assumed that variables, in-
terrelated with elements of the set L∆σ2 , are independent one of another. On
the basis of multiplication via multiple addition:

na = a+ a+ . . .+ a
︸ ︷︷ ︸

n

, (14)

for the set L∆σ2 one may define multiplication as number increment, i.e. increase
in the number of summations ∆n:

∀∆n ∈ R, b ∈ L∆σ2 :
{
∆nb ≡

(
∆n∆ηb; ∆n∆σ2

b

)}
. (15)

This corresponds to n-time addition of independent random variables.
The above addition can be used to compare pixels of an image. For example,

the images can be taken from a still camera. The comparison is aimed to detect
changes on the image and, consequently, to detect objects which can appear
there. The result of comparison of particular pixels is used for the detection
of changed image fragments. A random variable Xj,k is associated with one
compared pixel and a random variable Yj,k is associated with another, where
j and k are pixel coordinates. One can compare average values (to compare
brightness levels of pixels) and standard deviations as well. This second com-
parison enables to compare local spatial changeability of pixels, what in the case
of digital cameras means the comparison of object outlines. So, for each pixel
average values and standard deviations are calculated.

It can be assumed at the beginning that pixels are compared for totally differ-
ent fragments of an image. For these fragments there is no dependence between
random variables Xj,k and Yj,k. On the basis of local average values and local
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standard deviations ordered pairs
(

∆ηXj,k; ∆σ2
Xj,k

)

and
(

∆ηY j,k; ∆σ2
Y j,k

)

are

calculated. For
(

∆ηY j,k; ∆σ2
Y j,k

)

the inverse element
(

−∆ηY j,k;−∆σ2
Y j,k

)

is

calculated, and then the sum
(

∆ηXj,k; ∆σ2
Xj,k

)

+
(

−∆ηY j,k;−∆σ2
Y j,k

)

. This

sum has a comparative nature. It determines how two pixel values and their
spatial changeability differ, i.e. how object outlines differ.

In the strictly theoretical case of comparison of the same image fragments,
pixel values correspond to each other directly. The random variables Xj,k

and Yj,k are dependent. If the variable Xj,k takes some value, then the vari-
able Yj,k takes the same value, the same with standard deviations of vari-
ables Xj,k and Yj,k. If these two images are added, then the average value
and standard deviation of the resulted image are doubled. This results from
doubling of amplitude of image value changes. This corresponds to the multi-
plication of random variable by the constant 2.

In practice, even if the scene before the camera does not change, the reg-
istered images are not necessarily the same. This can be the result of changes
of sunlight intensity. It affects average value levels, which will be greater for
the brighter image. It affects also the amplitude of image changeability, which
will be greater for brighter images, and therefore standard deviations of brighter
images will be greater as well. This differences in average values and standard
deviations do not affect the dependency of random variables associated with
particular image pixels. In the case of addition of such images average values
are added and standard deviations are added as well.

In the case of comparison of camera images with the same fragments, the
local average values and local standard deviations are the base for the calculation
of ordered pairs (∆ηXj,k; ∆σXj,k) and (∆ηY j,k; ∆σY j,k). For (∆ηY j,k; ∆σY j,k)
the inverse element is calculated, and then the sum (∆ηXj,k; ∆σXj,k)
+ (−∆ηY j,k; −∆σY j,k).

In the above example the interdependence of random variables is not known
before the start of calculations. Only the result of calculations determines the
obtained interdependence of random variables. For both cases one can determine
the similarity of fragments and choose the appropriate final value just after the
calculation results are obtained. Therefore, it is necessary to define operations
for increments of variance and for increments of standard deviation as well.

The other case to be examined occurs when variables depend on one another.
It is necessary then to change the notation. Average value increment ∆η and
standard deviation increment ∆σ should be adopted as ordered pair:

∀∆η, σ ∈ R : (∆η; ∆σ) . (16)

A set of all the ordered pairs will belong to the set L∆σ. Addition in this
set may be expressed as follows:

∀a, b ∈ L∆σ : {a+ b ≡ (∆ηa +∆ηb; ∆σa +∆σb)} . (17)
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Element (0; 0) is neutral, and element (−∆η;−∆σ) is the opposite of element
(∆η; ∆σ). The set L∆σ together with addition form the Abelian group. On
the basis of summation via multiple addition, for the set L∆σ one may define
multiplication as number increment ∆n:

∀∆n ∈ R, b ∈ L∆σ : {∆nb ≡ (∆n∆ηb; ∆n∆σb)} . (18)

This corresponds to n-time addition of totally dependent random variables and
is equivalent to the multiplication of an average value increment and standard
deviation increment by the constant.

The objective of this paper is to define the vector space, where vectors are
described by means of ordered pairs: (increment of average value, increment
of variance) and (increment of average value, increment of standard deviation).
The scalars are quantity increments generalized to the form allowing to take
real numbers (values). In the case of ordered pairs (increment of average value,
increment of standard deviation) the scalars are constants which the random
variables are multiplied by. This results from the nature of vector space. Each
vector consists of a specified number of ordered pairs (∆η; ∆σ). Their number
is the dimension of the space. The interdependence of random variables associ-
ated with these pairs is meaningless, because there are no arithmetic operations
combining them. There is only one exception: calculation of scalar product.
Vectors can be added, what corresponds to the addition of corresponding vec-
tor components. Additionally, dependence of random variables associated with
added vectors is assumed. The multiplication by the scalar n corresponds to
n-time addition of the multiplied vector itself.

The usage of vector spaces in an image comparison will be presented to
indicate practical applications of the defined spaces.

2. Vector space

As a rule, a vector consists of multiple elements, whose number determines the
dimension of space. Therefore, it may be defined as an ordered set of n elements:

(a1; a2; . . . ; an) , (19)

while a1; a2; . . . an may belong to the set L∆σ2 :
((
∆η1; ∆σ2

1

)
;
(
∆η2; ∆σ2

2

)
; . . . ;

(
∆ηn; ∆σ2

n

))
. (20)

Such and ordered set of n elements may be denoted L∆σ2n. Analogously,
one may define the ordered set of n elements belonging to the set L∆σ.

Operator of addition in the set L∆σ2n may be defined in the following way:

∀u, v ∈ L∆σ2n :
{
[u+ v] ≡

((
∆ηu1 +∆ηv1; ∆σ2

u1 +∆σ2
v1

)
;

(
∆ηu2 +∆ηv2; ∆σ2

u2 +∆σ2
v2

)
; . . . ;

(
∆ηun +∆ηvn; ∆σ2

un +∆σ2
vn

))}
. (21)



154 M. BORAWSKI

Formally speaking, vector space may be defined as a set X over field (K,+, ·)
if the following conditions are satisfied (Bronsztejn et al., 2004):

1. (X,+) is the Abelian group.
2. A binary operation, assigning the element c ∈ X to the ordered pair (k, x)

where k ∈ K and x ∈ X , has been defined. This operation may be referred
to as the multiplication of a vector by a scalar.

3. Neutral element of multiplication in the field K is also a neutral element
of multiplication of vector by scalar. If e ∈ K is a neutral element of
multiplication in the set K, then:

∀x ∈ X : [ex = x] . (22)

4. Associative character of multiplication of a vector by scalar:

∀r, s ∈ K, ∀x ∈ X : [r (sx) = (rs) x] . (23)

5. Commutativity of multiplication of a vector by scalar toward addition in
the set K:

∀r, s ∈ K, ∀x ∈ X : [(r + s)x = rx + sx] . (24)

6. Commutativity of multiplication of a vector by scalar toward addition in
the set X :

∀r ∈ K, ∀x, y ∈ X : [r (x+ y) = rx + ry] . (25)

Elements of the set K may be referred to as scalars, and elements of the set
X - as vectors.

One may point out the following properties of vector space for the set L∆σ2n:
1. Operation + is associative and commutative in the set L∆σ2n, which stems

from associative and commutative character of addition in the set L∆σ2 .
There is a neutral element in the set L∆σ2n:

((0; 0) ; (0; 0) ; . . . ; (0; 0)) , (26)

and the inverse of an element:

((
−∆η1;−∆σ2

1

)
;
(
−∆η2;−∆σ2

2

)
; . . . ;

(
−∆ηn;−∆σ2

n

))
. (27)

Hence, the set L∆σ2n together with addition form the Abelian group.
2. It can be adopted as binary operation:

∀a ∈ R, ∀u ∈ L∆σ2n :
[
a · u ≡

((
a∆ηu1; a∆σ2

u1

)
;
(
a∆ηu2; a∆σ2

u2

)
; . . . ;

(
a∆ηun; a∆σ2

un

))]
. (28)
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3. Unity — the neutral element of multiplication in the field R — is also a
neutral element in the multiplication of the vector by scalar:

∀u ∈ L∆σ2n :

1 · a =
((
1∆ηu1; 1∆σ2

u1

)
;
(
1∆ηu2; 1∆σ2

u2

)
; . . . ;

(
1∆ηun; 1∆σ2

un

))
=

=
((
∆ηu1; ∆σ2

u1

)
;
(
∆ηu2; ∆σ2

u2

)
; . . . ;

(
∆ηun; ∆σ2

un

))
. (29)

4. Associative character of multiplication of a vector by scalar:

∀a, b ∈ R, ∀u ∈ L∆σ2n :

a [bu] = a
[
b ·

((
∆ηu1; ∆σ2

u1

)
;
(
∆ηu2; ∆σ2

u2

)
; . . . ;

(
∆ηun; ∆σ2

un

))]
=

= a ·
((
b∆ηu1; b∆σ2

u1

)
;
(
b∆ηu2; b∆σ2

u2

)
; . . . ;

(
b∆ηun; b∆σ2

un

))
=

=
((
ab∆ηu1; ab∆σ2

u1

)
;
(
ab∆ηu2; ab∆σ2

u2

)
; . . . ;

(
ab∆ηun; ab∆σ2

un

))
. (30a)

∀a, b ∈ R, ∀u ∈ L∆σ2n :

[ab]u = ab ·
((
∆ηu1; ∆σ2

u1

)
;
(
∆ηu2; ∆σ2

u2

)
; . . . ;

(
∆ηun; ∆σ2

un

))
=

=
((
ab∆ηu1; ab∆σ2

u1

)
;
(
ab∆ηu2; ab∆σ2

u2

)
; . . . ;

(
ab∆ηun; ab∆σ2

un

))
. (30b)

5. Commutativity of a multiplication of a vector by scalar toward addition
in the set R:

∀a, b ∈ R, ∀u ∈ L∆σ2n : au+ bu =

=
((
a∆ηu1; a∆σ2

u1

)
;
(
a∆ηu2; a∆σ2

u2

)
; . . . ;

(
a∆ηun; a∆σ2

un

))
+

+
((
b∆ηu1; b∆σ2

u1

)
;
(
b∆ηu2; b∆σ2

u2

)
; . . . ;

(
b∆ηun; b∆σ2

un

))
=

=
((
a∆ηu1 + b∆ηu1; a∆σ2

u1 + b∆σ2
u1

)
;

(
a∆ηu2 + b∆ηu2; a∆σ2

u2 + b∆σ2
u2

)
; . . .

. . . ;
(
a∆ηun + b∆ηun; a∆σ2

un + b∆σ2
un

))
. (31a)

∀a, b ∈ R, ∀u ∈ L∆σ2n : [a+ b]u =

=
((
[a+ b]∆ηu1; [a+ b] ∆σ2

u1

)
;
(
[a+ b] ∆ηu2; [a+ b] ∆σ2

u2

)
; . . .

. . . ;
(
[a+ b] ∆ηun; [a+ b]∆σ2

un

))
=

=
((
a∆ηu1 + b∆ηu1; a∆σ2

u1 + b∆σ2
u1

)
;

(
a∆ηu2 + b∆ηu2; a∆σ2

u2 + b∆σ2
u2

)
; . . .

. . . ;
(
a∆ηun + b∆ηun; a∆σ2

un + b∆σ2
un

))
. (31b)
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6. Commutativity of multiplication of a vector by scalar toward addition in
the set L∆σ2n:

∀a ∈ R, ∀u, v ∈ L∆σ2n : au+ av =

=
((
a∆ηu1; a∆σ2

u1

)
;
(
a∆ηu2; a∆σ2

u2

)
; . . . ;

(
a∆ηun; a∆σ2

un

))
+

+
((
a∆ηv1; a∆σ2

v1

)
;
(
a∆ηv2; a∆σ2

v2

)
; . . . ;

(
a∆ηvn; a∆σ2

vn

))
=

=
((
a∆ηu1 + a∆ηv1; a∆σ2

u1 + a∆σ2
v1

)
;

(
a∆ηu2 + a∆ηv2; a∆σ2

u2 + a∆σ2
v2

)
; . . .

. . . ;
(
a∆ηun + a∆ηvn; a∆σ2

un + a∆σ2
vn

))
. (32a)

∀a ∈ R, ∀u, v ∈ L∆σ2n : a [u+ v] =

= a
((
∆ηu1 +∆ηv1; ∆σ2

u1 +∆σ2
v1

)
;
(
∆ηu2 +∆ηv2; ∆σ2

u2 +∆σ2
v2

)
; . . .

. . . ;
(
∆ηun +∆ηvn; ∆σ2

un +∆σ2
vn

))
=

=
((
a∆ηu1 + a∆ηv1; a∆σ2

u1 + a∆σ2
v1

)
;

(
a∆ηu2 + a∆ηv2; a∆σ2

u2 + a∆σ2
v2

)
; . . .

. . . ;
(
a∆ηun + a∆ηvn; a∆σ2

un + a∆σ2
vn

))
. (32b)

The set L∆σ2n over the field of real numbers R is a vector space.
It is also plausible to define vector space on the basis of the set L∆σ:

((∆η1; ∆σ1) ; (∆η2; ∆σ2) ; . . . ; (∆ηn; ∆σn)) . (33)

A complete set of all such possible n elements will be referred to as L∆σn

from now on. Addition in this set may be defined in the following way:

∀u, v ∈ L∆σn : {[u+ v] ≡ ((∆ηu1 +∆ηv1; ∆σu1 +∆σv1) ;

(∆ηu2 +∆ηv2; ∆σu2 +∆σv2) ; . . . ; (∆ηun +∆ηvn; ∆σun +∆σvn))} .
(34)

One can demonstrate that the set L∆σn over the field of real numbers is a
vector space. Proof is analogical to that concerning the set L∆σ2n. The binary
operation is as follows:

∀a ∈ R, ∀u ∈ L∆σn :

[a · u ≡ ((a∆ηu1; a∆σu1) ; (a∆ηu2; a∆σu2) ; . . . ; (a∆ηun; a∆σun))] . (35)

3. Scalar product in vector space of increments

In vector space, vectors may be subject to addition, extension and reduction,
due to which they can be used for creating the coordinate system in which a
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given (delineated) set of vectors allows to determine other vectors on the basis of
scalars. Nevertheless, one cannot carry out limitless operations in this system.
It is not possible to change the coordinate system once it has been chosen. It
is always imposed in advance and it is not plausible to convert coordinates into
another coordinate system. Such a mechanism is introduced by the definition
of scalar product, which opens up the possibilities of carrying out operations in
vector space. Scalar product is a part of the definition of pre-Hilbert space.

Vector space X over the field (K,+, ·) is also called pre-Hilbert space if
it includes a function that assigns element α ∈ K to each pair of elements
(x, y) that are members of the set X , and satisfying the following conditions
(Bronsztejn et al., 2004):

1. Scalar product of vector projected onto itself cannot be negative:

∀x ∈ X : [(x, x) ≥ 0] . (36a)

2. Scalar product of vector projected onto itself may equal 0 only for neutral
element of addition in the set of vectors:

[(x, x) = 0] ≡ [x is zero element] . (36b)

3. Factoring the constant out the scalar product:

∀x, y ∈ X, ∀α ∈ K : [(αx, y) = α(x, y)] . (36c)

4. Commutativity of scalar product toward addition in the set X :

∀x, y, z ∈ X : [(x + y, z) = (x, z) + (y, z)] . (36d)

5. Conjugate symmetry:

∀x, y ∈ X : [(x, y) = (y, x)∗] , (36e)

where ∗ denotes conjugate number.
This function is called scalar product in pre-Hilbert space. If - with the use

of scalar product - in pre-Hilbert space one defines a norm expressed by the
following formula (Bronsztejn et al., 2004):

‖x‖ =
√

(x, x) , (37)

then this space is referred to as unitary space.
On the basis of scalar product, one may define a formula that allows to

calculate the absolute value of a vector along another one (Nermend, 2009):

c =
(x, y)

(y, y)
. (38)

Coefficient c is referred to as a component of vector A along vector B, and
the entire process that involves finding of this coefficient — projection.
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A method for calculating scalar product must be selected in such a way
so that vector component determined on this basis enables one to define how
many times a vector must be laid off to obtain another one. Therefore, a vector
must be reconstructed with the use of another vector in a correct manner.
However, such reconstructions may differ depending on the way of interpreting
the multiplication of the vector by scalar. In vector space created over the
set L∆σ2n, one should strive for the right reconstruction of both average value
increment and variance increment. In practice, when a vector is projected onto
another one, it is generally impossible to reconstruct both parameters properly.
Nonetheless, one may determine their significance, and hence scalar product
together with weight should be defined:

∀u, v ∈ L∆σ2n :

{

(u, v)w ≡

N∑

k=1

[
w∆ηuk

∆ηvk + (1− w)∆σ2
uk
∆σ2

vk

]

}

, (39)

where N is a number of elements in the sets of n - elements that make up vectors
u and v, and w — weight ascribed to the increment of average value.

It is accepted that the value of weight ranges from 0 to 1, where 1 implies that
variance increment is insignificant, whereas 0 — that increment of average value
is such. The result of scalar product calculations is the scalar, corresponding to
the relation of the objects associated with two vectors. The greater is its value,
the more similar are both objects and the greater are values describing them.
The scalar is not the variance nor the average value; it is only some coefficient.
Therefore the variances in the formula for scalar calculations are not treated as
variances themselves, but only as some coefficients allowing to calculate another
coefficient — the scalar. Scalar product is characterized by the following:

1. Scalar product of vector projected onto itself cannot be negative:

(a, a)w =

N∑

k=1

[

w∆η2ak
+ (1− w)

(
∆σ2

ak

)2
]

. (40)

Square of average value increment as well as square of variance increment
are always non-negative, hence scalar product of vector projected onto
itself will never be negative.

2. Scalar product of vector projected onto itself can equal zero only for neu-
tral element of addition in the set of vectors. Square of average value
increment as well as variance increment are always non-negative, hence
scalar product equals zero only for vector that is a neutral element of ad-
dition in the set of vectors. The only exception to the rule is a situation
when the weight equals 0 or 1. In the former case, scalar product equals
zero for all the vectors with zero variance increments and any increment
of average value. As for the latter case, it is the other way round: scalar
product equals zero for all the vectors with zero increment of average value
and any variance increment.
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3. Factoring the constant out of the scalar product:

α (a, b)w = α

N∑

k=1

[
w∆ηak

∆ηbk + (1− w)∆σ2
ak
∆σ2

bk

]
=

N∑

k=1

[
αw∆ηak

∆ηbk + α (1− w)∆σ2
ak
∆σ2

bk

]
, (41a)

whereas:

(αa, b)w =

N∑

k=1

[
αw∆ηak

∆ηbk + α (1− w)∆σ2
ak
∆σ2

bk

]
. (41b)

Multiplication by a constant is understood as multiple addition. Multiply-
ing the constant α by vector leads to a α-times greater increment of average
value as well as increment of variance. Therefore, α (a, b)w = (αa, b)w.

4. Commutativity of multiplication of the vector by scalar toward addition:

(a, b)w + (a, c)w =

N∑

k=1

[
w∆ηak

∆ηbk + (1− w)∆σ2
ak
∆σ2

bk

]
+

N∑

k=1

[
w∆ηak

∆ηck + (1− w)∆σ2
ak
∆σ2

ck

]
, (42a)

hence:

(a, b)w + (a, c)w =

=

N∑

k=1

[
w∆ηak

∆ηbk +∆ηak
∆ηck

+(1− w)∆σ2
ak
∆σ2

bk
+∆σ2

ak
∆σ2

ck

]
=

=

N∑

k=1

[
w∆ηak

(
∆ηbk +∆ηck

)
+ (1− w)∆σ2

ak

(
∆σ2

bk
+∆σ2

ck

)]
=

= (a, b+ c)w .

(42b)

5. Conjugate symmetry. Increments of average values and variances are not
conjugate numbers. Hence, only common symmetry should be examined
here. Symmetry of scalar product under consideration stems from the
symmetry of multiplication in the set of real numbers.

For w (ranging from 0 to 1) the aforementioned scalar product satisfies all
the axioms of pre-Hilbert space (except for w = 0 and w = 1). The two cases do
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not satisfy the axiom that assumes a non-zero scalar product of vector projected
onto itself, not being neutral elements of addition in the set of vectors. Scalar
products for w = 1 and w = 0 are very interesting cases as they allow to
calculate projection coefficient in such a way so that average value increment
or variance increment is reconstructed best. Thanks to this they complement
one another. This is of profound importance since scalar is a one-component
number and so projection coefficient does not allow for reconstructing a vector
considering properly the average value increment and the variance increment at
the same time. Therefore, it may often be useful to calculate not one but two
projection coefficients — one for average value increment (w = 1) and the other
one for variance increment (w = 0).

Scalar product, defined just as above, enables calculation of the projection
of vector a onto vector b, which may be expressed in the following way:

c =
(a, b)w
(b, b)w

=

N∑

k=1

[
w∆ηak

∆ηbk + (1− w)∆σ2
ak
∆σ2

bk

]

N∑

k=1

[

w∆η2bk + (1− w)
(
∆σ2

bk

)2
]

. (43)

In this case, variance increment may be treated as a full element of space
related to its own dimension. The projection of a vector onto another is made
in the same way as in the case of ’normal’ spaces. Variance increment is treated
as a coordinate, which is shown in Fig. 1a.

Formula (43) may be expressed in a different way:

c =

w

N∑

k=1

∆ηak
∆ηbk + (1− w)

N∑

k=1

∆σ2
ak
∆σ2

bk

N∑

k=1

[

w∆η2bk + (1− w)
(
∆σ2

bk

)2
]

=

=

w

N∑

k=1

∆ηak
∆ηbk

N∑

k=1

[

w∆η2bk + (1− w)
(
∆σ2

bk

)2
]
+

(1− w)
N∑

k=1

∆σ2
ak
∆σ2

bk

N∑

k=1

[

w∆η2bk + (1− w)
(
σ2
bk

)2
]
.

(44)

Therefore, coefficient c is a sum of two projection coefficients: projection
of the vector made up of coordinates of vector a and relating to increments of
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(a)

B

A

∆η

∆σ2

c

(b)

B

A

∆η

∆σ2A∆σ2

A∆η

c∆σ2

c∆η

Figure 1. Projection of vectors defined with the use of average value and vari-
ance increments: a) direct calculation of projection coefficient; b) calculation
of projection coefficients for average value increment and variance increment of
vector a, respectively

average values onto vector b:

c∆η =

w

N∑

k=1

∆ηak
∆ηbk

N∑

k=1

[

w∆η2bk + (1− w)
(
∆σ2

bk

)2
]
, (45a)

as well as the projection of vector created on the basis of coordinates of vector
a and relating to increments of variance onto vector b:

c∆σ2 =

(1− w)
N∑

k=1

∆σ2
ak
∆σ2

bk

N∑

k=1

[

w∆η2bk + (1− w)
(
∆σ2

bk

)2
]
. (45b)

Coefficients of projection c∆η and c∆σ2 enable examination of increments of
average values and variances relating to vector a individually while projecting.
To do so, vector a is divided into two vectors: a∆η (with variance increments
equal 0) and a∆σ2 (with increments of average values equal 0). Vector a is a
sum of the two vectors. Analogously, vector b can be divided into vectors b∆η

and b∆σ2 . It is possible to determine scalar product and projection coefficient
only for pairs of vectors a∆η, b∆η and a∆σ2 , b∆σ2 . Such a procedure is of major
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importance, particularly in calculations that compare variance increments, i.e.
variance increment may, for instance, provide an extra piece of information
allowing to identify object examined. Values of scalar product for pairs of
vectors a∆η, b∆σ2 and a∆σ2 , b∆η will always equal zero and hence there is no
point in calculating them.

On the basis of scalar product (a, a)w one may determine the absolute value
of a vector:

‖a‖w =
√

(a, a)w =

√
√
√
√

N∑

k=1

[
w∆η2ak

+ (w − 1)∆σ4
ak

]
. (46)

For w ∈ [0,1] the absolute value of the vector is a norm. It may be used
for comparing vectors. Scalar products for which w = 1 and w = 0 allow to
compare the part of vector relating to average value increment and the part
relating to variance increment.

It is not always important to reconstruct a vector paying attention to vari-
ance increment. Hence, scalar product (a, b)1 can be used for this purpose.
However, the result obtained should be supplemented with a parameter defin-
ing the potential scatter. Yet, it is not possible to use scalar product (a, b)

0

since the projection based on this product determines by what number the vec-
tor (which is subject to projection aimed at reconstructing variance increment
properly) should be multiplied, which is not tantamount to determining the
scatter for average value increment.

Attention should be paid to the fact that variance increments calculated in
such a way relate only to a vector which is subject to projection. Therefore, it
is necessary to determine variance increments relating to a vector that is being
projected as well. Projection onto one vector is the simplest operation that
allows to determine coordinates in a new coordinate system. In this case, the
coordinate system is one-dimensional and is a vector onto which the projection
is made. In computer graphics, vector transformation is used interchangeably
with operation involving the change of the coordinate system. For example, it is
possible to rotate a vector or (instead) calculate the coordinates of the vector in
a new coordinate system rotated relative to the former system of coordinates. As
far as vector space relating to the set L∆σ2n is concerned, the results will be the
same as for average value increment, yet different for variance increment. In the
case of vector transformation, the projected vector is subject to transformation,
which allows to calculate variance increments relating to this vector.

Any vector a may be transformed on the basis of the following formula
(Karaśkiewicz, 1974):

xa = Da , (47)

where D is a square matrix with size equal the number of space dimensions, or
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(Karaśkiewicz, 1974):

xai =
N∑

k=1

dikak , (48)

where dik is an element of D .
With the use of matrix D it is possible to determine coordinates of the vector

xa on the basis of coordinates of vector a, which enables one to transform both
average value increment and increment of variance of vector a into the direction
of vector b. There is a relationship between vector xa and vector a expressed
in the formula (47). However, vector xa may also be determined on the basis
of the projection of vector a onto vector b. Replacing xa with its coordinates
calculated on the basis of the projection, the formula (47) becomes:

cb = Da , (49)

hence:

(a, b)
1

(b, b)
1

b = Da . (50)

The formula for determining matrix D cannot take any general form for any
scalar product. Nevertheless, matrix D may be determined for particular scalar
products. For the scalar product (a, b)1 such formula will be as follows:

N∑

i=1

ηai
ηbi

N
2∑

j=1

η2bj

ηbk =
N∑

i=1

dk,iηai
, (51)

which may also be expressed as:

N∑

i=1

ηai

ηbiηbk
N∑

j=1

η2bj

−

N∑

i=1

dk,iηai
= 0 . (52)

Factoring out all ηai
, we obtain the following:

N∑

i=1

ηai










ηbiηbk
N∑

j=1

η2bj

− dk,i










= 0 . (53)
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It should be emphasized that matrix D transforms any vector a into a vector
with the same direction as that of vector b. Thus, values of this matrix depend
only on vector b and so the above formula should be true for any a. Hence,
all the factors in brackets must always equal 0. The value of matrix D may be
calculated with the use of the following formula:

dk,i =
ηbiηbk
N∑

j=1

η2bj

. (54)

Values of matrix D are calculated only for average value increments. Nev-
ertheless, one should bear in mind that, by assumption, variance increment
follows average value increment. Therefore, if average value increment is mul-
tiplied by some value, variance increment should be multiplied by this value as
well. Hence, vector X may be treated as a sum of two vectors XηA and Xσ2A

the coordinates of which may be calculated as follows:

XηA = DAη , (55a)

and:

Xσ2A = DAσ2 . (55b)

Once variance increments have been determined, it is necessary to reduce
them to one value. Similar procedures are adopted for the projected vector and
for the vector which is subject to projection. One should use the absolute value
of vector ‖b′‖

0
. It determines the absolute value of variance defined with the

use of increments. In this way, one obtains variance increment relating to the
absolute value of vector, and not to projection coefficient. This coefficient is
expressed in units measuring the absolute value of the vector that is subject to
projection, which may be expressed as:

c =
‖b′‖

1

‖b‖
1

. (56)

where ‖b′‖
1

is the absolute value relating to average value increment recon-
structed onto the projected vector.

Variance increment for coefficient c may be calculated by replacing the ab-
solute value of average value increment of the reconstructed vector with the
absolute value of variance increment in the aforementioned formula:

∆σ2
c =

‖b′‖
0

‖b‖
1

. (57)

Due to the fact that ∆σ2
c is calculated for two vectors (the projected one

and the one that is subject to projection) we obtain two values ∆σ2
c that should

be summed.
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4. Practical applications in image processing

The presented example will use the cross-correlation function values calculated
in the vector space for the analysis of local standard deviations of an image.
These standard deviations constitute two-dimensional table of standard devi-
ations (or variances). This table is treated in image processing as an image.
For instance, Fourier transform of local variances was carried out in Heizmann
(2005) and wavelet transform of local standard deviations was presented in
Truong, Dorai and Venkatesh (2000). From the vector calculus point of view
these transforms can be calculated via the transformation of the coordinates
system, and this transformation, due to its definition, can not be performed for
variances and standard deviations. These types of operations can be performed
for increments of variances and increments of standard deviations only.

For formal reasons, every operation in vector space involving variance and
standard deviation must be carried out on their respective increments. If cal-
culations are aimed at comparing variances, the methodology of calculations
will not differ from classical methods much. In the case of simple methods for
comparing the entire bit-mapped images or their fragments, using local incre-
ments of variance will not as a rule produce good results. This is due to the fact
that effective field including a useful piece of information (contour) is very small
compared to the entire image. Furthermore, the variance of surface of various
colours (texture) is rather slight compared with the variance of contour, which
makes it impossible to compare images by the character of their surface unless
the variance of contour is weakened or eliminated.

Nevertheless, only images created by means of the reflection of light have
such a character. In the case of longer waves (e.g. sound wave) contours of
objects are not so sharp. Transition from the image that reflects wave to a
greater extent to the image that reflects it to a lesser degree is much smoother.
Therefore, contours of the images, whose pixels are local variances are practically
invisible (Fig. 2). In this case, variance mainly provides information concerning
the character of surface that reflects the wave, which allows to employ simple
methods for comparing the variance increments in order to solve major problems
with such images.

The automation of mosaic creation for the image from sector-scan sonar may
be quoted as an example of comparing variance increments in practice. Sector-
scan sonar, unlike side-scan one, is lowered onto the bottom where rotating
head transmits sound beam that - once it rebounds from the bottom - is used
for creating the image. Yet, unlike echo sounder, it records the strength of
signal reflected, and not the time from transmission to reception, due to which
the image shows objects that reflect sound wave both to a lesser and greater
extent. Sector-scan sonar may be used for supervising diver’s work, seeking sunk
objects and people, and for inspection of technical objects such as bridges. Since
the distance from objects registered is small and insensitive to the movement of
water and ship, the side-scan sonar is better, yet it is more laborious to use it.
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(a) (b)

Figure 2. Local variances for a sonar image: a) original image (source: Nawiga-
tor XXI, Maritime Univeristy of Szczecin); b) computed local variances

The sector-scan sonar has been employed in the military for a very long time,
yet it has been in commercial use only since recently. Hence, there is a number
of problems with creating and processing of image that have not been solved
for this sonar yet (no solutions were published or implemented by commercial
programmes). One of such problems is related to combining several images from
the sonar that is located in different places at the bottom. It is often the case
while conducting underwater inspection of bridges, wharves and other objects
when it is necessary to locate sonar in different places at the bottom to obtain
a more clear image. Once soundings have been made, images are put together
manually into one big image. The automation of this action is hindered by the
fact that one does not know the precise location of the sonar. This location
can be determined to a centimetre accuracy with the use of information derived
from RTK. However, a current may move the sonar along an uneven bottom
and a ship (if the sonar is lowered from a vessel) may be subject to movement
as well, and therefore the position of the sonar may change by several metres
compared to the initial one.

Every image recorded by the sonar has its scale resulting from the scope
of sounding adopted. The position relative to the North is also known, which
stems from the fact that sonar of this type usually has built-in compass and
thus, even if it rotates while being lowered, this has no effect on its reading of
the North. Its approximate position is known as well. All the data is saved in a
file with sonar image (except for the position that is being recorded only when
GPS or RTK is connected).

Fig. 3 shows two images from sector-scan sonar presenting the same bottom
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(a) (b)

Figure 3. Images of the same fragment of the bottom obtained from the sonar
placed in different places of the bottom (source: Nawigator XXI, Maritime
University of Szczecin)

regions produced from different positions and operating range of sonar. On the
basis of data derived from GPS, fragments of the image, that should overlap,
were chosen and marked with white rectangle. Local variances were calculated
for these fragments. The average value of variance was used as the reference
point to determine the increments of variances. Thus, increments were calcu-
lated as a difference between variance and average value of variance. Local
increments of variance, calculated in such a way for both fragments of sonar
image, were treated as two vectors, a and b. Further calculations make use of
scalar product (a, b)

0
and hence increments of average values are not significant.

In the image processing the cross-correlation function is calculated according
to the following formula (Gonzalez and Wood, 2002; Jähne, 2004):

kj,k =
1

S

L∑

l=1

M∑

m=1

a∗l,mbj+l,k+m , (58)

where S = LM , a and b are compared images (in the concerned case they
are the tables of variances), ∗ marks the conjugate number, k — table of the
cross-correlation function values, and L, M — size of an image.

It is assumed, to ensure the range of the cross-correlation function values
between minus one and plus one, that the S value is:

S =

√
√
√
√

L∑

l=1

M∑

m=1

a2l,m

√
√
√
√

L∑

l=1

M∑

m=1

b2l,m. (59)
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The value of cross-correlation function, calculated for one element of the
table k, with S given by the formula (59), can be interpreted as the projection
of one unitary vector onto another. The division by S corresponds to the calcu-
lation of the unitary vectors a′ and b′ on the basis of the vectors a and b. The
sum of products from the formula (58) is used to determine the coefficient of
projection of vector a′ onto vector b′.

After determination of table k the projection coefficient with the greatest
value was selected. For this coefficient the value of the cyclic horizontal and
vertical shift for the image fragment was read out. These values determine the
mutual shift of combined images.

Figure 4. Two sonar images overlapped on each other

The aforementioned procedure for determining the shift between images is
a classical one. Nevertheless, in this case it was employed for calculating the
shift between local increments of variance. For formal reasons, such action is
not plausible with local variance. Fig. 4 shows the images combined. They
underwent overlapping by calculating their average value. The combined image
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shows two circles that determine the location of the sonar when both images
are being recorded.

5. Conclusion

The article presents definitions of vector space of increments that allow to con-
duct operations on increments of variance and standard deviation. Other types
of increments (e.g. interval increments) can also be defined. The present paper
focused mainly on variance increment. The definition of vector space and scalar
product justifies using vector calculus for variance increment. At the same time
one can compare increments of variances, and determine the variance of the
result (i.e. its possible inaccuracy) as well. The procedure for defining inaccu-
racy of calculation results requires a different attitude compared to the classical
vector calculus. In order to put it into practice, it is essential to conduct further
research. As for comparing the increments of variance, the procedure is very
similar to the existing methods involving vector calculus, which was illustrated
with the example of combining the images from sector-scan sonar.
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