Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let xt be an arbitrary one-dimensional diffusion process and yt be a one-dimensional controlled diffusion process starting from y0 = y ∈ (a, b). The process is controlled until yt crosses either y = a or y = b for the first time. Our aim is to find the control ut that minimizes an expected cost functional with both quadratic control and boundary crossing costs. An explicit form for the optimal control is obtained under certain conditions.
Czasopismo
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
autor
- 1Department of Mathematics and Applied Mathematics University of the Western Cape, Private Bag X17 Bellville 7535, South Africa, cmakasu@uwc.ac.za
Bibliografia
- Fleming, W.H., Rishel, W.R. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, New York.
- Lefebvre, M. (1987) Optimal control of an Ornstein-Uhlenbeck process. Stochastic Process. Appl. 32, 281-287.
- Lefebvre, M. (1991) Forcing a stochastic process to stay in or leave a Niven region. Ann. Appl. Prob. 1, 167-172.
- Lefebvre, M. (1994) LQG problems with a possibly infinite final cost. Optimization 29, 73-79.
- Makasu, C. (2009) Risk-sensitive control for a class of homing problems. Automatica J. IFAC 45, 2454-2455.
- Whittle, P. (1982) Optimization Over Time, Vol. I. Wiley, Chichester.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0034