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Abstract: In this paper we develop a general convergence the-
ory for nonmonotone line searches in optimization algorithms. The
advantage of this theory is that it is applicable to various step size
rules that have been published in the past decades. This gives more
insight into the structure of these step size rules and points to several
relaxations of the hypotheses. Furthermore, it can be used in the
framework of discretized infinite-dimensional optimization problems
like optimal control problems and ties the discretized problems to
the original problem formulation.
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1. Descent methods

In this paper, we consider the generalization of step size rules for unconstrained
optimization problems in Hilbert space.

Let f : X → IR with Hilbert space X and inner product 〈·, ·〉 be given and let
f be Fréchet-differentiable where the derivative f ′(x)v of f at x ∈ X is denoted
by the gradient ∇f(x) ∈ X as

f ′(x)v = 〈∇f(x), v〉

for all v ∈ X . The minimization problem is formulated as

min
x∈X

f(x) or find x∗ such that f(x∗) ≤ f(x) for all x ∈ X.

Algorithms for finding x∗ are often based on the following concept.
Given xk ∈ X we call dk ∈ X a descent direction, if 〈∇f(xk), dk〉 < 0. In

a descent method the next iterate is determined by

xk+1 = xk + αkdk

∗Submitted: February 2011; Accepted: September 2011
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with an appropriate step size αk ∈ (0,∞). It is obvious that a sufficiently small
step size αk combined with the descent direction yields a decrease in function
value, i.e. f(xk+1) < f(xk). This yields a monotone decreasing sequence f(xk)
and is often a building block in a subsequent convergence proof.

However, it has been noted that such a monotonicity property can be a
burden from a numerical point of view, i.e. it could lead to fairly small step sizes
even when far away from the minimum. Therefore, several papers have appeared
in the past, where this requirement has been weakened to allow nonmonotone
behavior in the function values.

The determination of an appropriate step size rule has been the topic of
numerous research articles and books starting with the early days of numerical
optimization. Here, we concentrate on step size rules which do not guarantee
that the function value of the new point is smaller than the function value of the
original point, so called nonmonotone step size rules. Fixed step sizes given by
sequences which satisfy certain convergence properties were already considered
fifty years ago, likewise those step size rules that are fractions of the norm of
the gradients. For a general theory on step size rules see e.g. Warth and Werner
(1997). In this context we also refer to the paper by Hüther (2002).

L. Grippo, F. Lampariello and S. Lucidi (1986, 1989) published a nonmono-
tone version of the popular Armijo’s rule. Shi and Shen (2006) extended this
approach to a descent term including a quadratic term. Zhang and Hager (2004)
gave a different version of a nonmonotone Armijo’s rule. Another well known de-
scent method with a nonmonotone step size rule is the Barzilai-Borwein method
(1988). The approaches in Barzilai and Borwein (1988), Grippo, Lampariello
and Lucidi (1986, 1989) are not covered in this paper and are the topic of future
research efforts to include these also in a general theory of nonmonotone line
searches.

The goal of this paper is to develop a general framework for a convergence
theory in connection with step size rules which do not require a monotone de-
scent property and allow also for perturbed descent directions. The advantage
of such a theory is its versatility in applying it to various scenarios of step size
rules. The general setting and the convergence statement for the general case
can be found in Section 2.

As a special case, it includes the theory of a-priori fixed sequences of step
size rules which have been quite popular with a number of authors. These step
size rules lead automatically to nonmonotone behavior of the function values.
In Section 3 we show how the general theorem can be applied to this special
case of step size rules.

Armijo’s step size rule is one of the most popular and most efficient step
size rules, since its behavior is - in contrast to the rules in Section 3 - problem
dependent. In Section 4 we formulate an extension of the classical Armijo rule
which allows for a nonmonotone behavior in the resulting function values f(xk).
Again, the general convergence theory in Section 2 plays an instrumental role
in the proof of convergence of the gradients.
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Another version of step size rules is based on the step size being a fixed
portion of the norm of the current gradient. Also this rule cannot lead to a
necessarily monotone descent property for the function values. In this case, we
can apply the general theory and interpret this rule in Section 5 as a special
case.

Zhang and Hager (2004) considered a nonmonotone version of Armijo’s rule
which can be interpreted as a rule taking the average of previous function value
iterates into account as a reference instead of the function value of the last
iterate. It is interesting to see that also here the general convergence theory,
when specialized appropriately, leads in Section 6 to a convergence statement
similar to the one stated in Zhang and Hager (2004).

In the final Section 7 we give some comments on how the perturbation term
in Armijo’s rule introduced in Section 4 can be interpreted as a discretization
error for a discretized problem. If the discretization is refined in the course of
the iterations, this can lead to a convergence statement for a sequence of iterates
in the infinite dimensional setting.

2. General setting and convergence theorem

Before we start with nonmonotone line searches, let us quote an elementary
Lemma, which will be used in the sequel.

Lemma 1 Let sequences {ak} and {εk} be given with

ak ≥ amin εk ≥ 0,
∞
∑

k=1

εk < ∞.

Assume that

ak+1 ≤ ak + εk,

then there exists a∗ ≥ amin with

lim
k→∞

ak = a∗.

A proof can be found, e.g., in Kaplan, Tichatschke (1994, Lemma 4.1).
Let us start with a general theorem on the convergence of function values.

In the assumptions the usual conditions on the descent properties of the search
directions are relaxed. The theorem deals not only with the convergence of
the function values, but yields also a convergence statement, the Zoutendijk
condition, about a forcing function

σ : X → IR

which will be specified more precisely below. The most common example of a
forcing function is σ(·) = ‖∇f(·)‖ such that the convergence of σ(xk) to zero
forces the gradients of f also to converge to zero.
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Note that the condition (1) which relates the descent direction and the forc-
ing function σ(·) contains a perturbation term λ. Even more important is the
fact that equation (2) does not require a descent property, even if the term
〈∇f(xk), dk〉 is negative. Even in this case, the perturbation term νk allows for
nonmonotone behavior in the function values.

Theorem 1 Let f : X → IR be Fréchet-differentiable and let f be bounded from
below on X. Furthermore, let σ : X → IR+ be given.
Assume that the sequences xk, dk ∈ X and αk, λk, νk ∈ IR satisfy αk, λk, νk ≥ 0
and

xk+1 = xk + αk dk,

with

λk − 〈∇f(xk), dk〉 ≥ σ(xk) ≥ 0 (1)

and for some ̺ > 0

f(xk+1)− f(xk) ≤ ̺ αk 〈∇f(xk), dk〉+ νk. (2)

If

∞
∑

k=1

λkαk < ∞ and
∞
∑

i=1

νk < ∞, (3)

then there exists f∗ ∈ IR with

lim
k→∞

f(xk) = f∗

and we have for the forcing terms

∞
∑

k=1

αk σ(xk) < ∞. (4)

Proof. Let fm denote the lower bound of f on X .
From (1) and (2) we obtain

(f(xk+1)− fm) − (f(xk)− fm) = f(xk+1)− f(xk)

≤ ̺ αk〈∇f(xk), dk〉+ νk ≤ ̺ αk λk + νk.

We choose ak = f(xk)− fm, εk = ̺ αk λk + νk and use assumption (3) in

∞
∑

k=1

εk = ̺

∞
∑

k=1

αk λk +

∞
∑

k=1

νk < ∞



Nonmonotone line searches for optimization algorithms 1063

so that Lemma 1 yields the convergence of the function values f(xk) → f∗.
The inequalities (1) and (2) imply

αkσ(xk) ≤ αkλk − αk〈∇f(xk), dk〉 ≤ αkλk + (f(xk)− f(xk+1) + νk)/̺.

Summation over k

j
∑

k=1

αkσ(xk) ≤

j
∑

k=1

αkλk +
1

̺

j
∑

k=1

νk +
1

̺
(f(x1)− f(xj+1))

and passing to the limit gives the estimate (3)

∞
∑

k=1

αkσ(xk) ≤

∞
∑

k=1

αkλk +
1

̺

∞
∑

k=1

νk +
1

̺
(f(x1)− f∗) < ∞.

3. Predetermined sequences of step sizes

One of the oldest step size concepts are those, where the step sizes are pre-
determined sequences which have to satisfy certain summability requirements.
Those schemes are independent of the underlying function f to be minimized
and therefore do not necessarily yield a descent in each iteration. Our general
framework is set up in such a way that it covers this scenario also as a special
case.

In comparison with classical convergence statements in this case, we allow the
descent direction dk to deviate from the steepest descent −∇f(xk) by a vector
quantity rk. We give conditions in (7) which still guarantee certain convergence
results as shown below.

Theorem 2 Let f : X → IR be Fréchet-differentiable and let f be bounded from
below on X. Furthermore, let ∇f(x) be bounded and Lipschitz-continuous on
X with Lipschitz-constant L.
Assume that the sequences xk, dk, rk ∈ X,αk ∈ IR satisfy αk ≥ 0 and

xk+1 = xk + αk dk,

with

dk = −∇f(xk) + rk (5)

with

∞
∑

k=1

α2
k < ∞ (6)

and

∞
∑

k=1

αk‖rk‖ < ∞, ‖rk‖ ≤ r∗. (7)
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Then there exists f∗ ∈ IR with

lim
k→∞

f(xk) = f∗ and

∞
∑

k=1

αk ‖∇f(xk)‖
2 < ∞. (8)

Proof. Note that with

λk = |〈∇f(xk), rk〉| and σ(x) = ‖∇f(x)‖2, (9)

together with (5), we obtain

λk − 〈∇f(xk), dk〉 = | 〈∇f(xk), rk〉 | −〈∇f(xk),−∇f(xk) + rk〉

≥ ‖∇f(xk)‖
2 = σ(xk) ≥ 0. (10)

To determine the perturbation νk estimate

f(xk+1) − f(xk) = f(xk + αkdk)− f(xk) =

∫ 1

0

〈∇f(xk + ταkdk), αkdk〉 dτ

= αk〈∇f(xk), dk〉+

∫ 1

0

〈∇f(xk + ταkdk)−∇f(xk), αkdk〉dτ

≤ αk〈∇f(xk), dk〉+
L

2
α2
k‖dk‖

2. (11)

By assumption, we have numbers g∗, r∗ such that

‖dk‖ ≤ ‖∇f(xk)‖+ ‖rk‖ ≤ g∗ + r∗. (12)

Hence, (2) is satisfied with

̺ = 1, νk = Lα2
k‖dk‖

2/2

and, moreover, by (6)

∞
∑

k=1

νk ≤

∞
∑

k=1

Lα2
k‖dk‖

2/2 ≤ L(g∗ + r∗)
2/2

∞
∑

k=1

α2
k < ∞.

Likewise, it is satisfied by (7)

∞
∑

k=1

λkαk =

∞
∑

k=1

αk|〈∇f(xk), rk〉| ≤ g∗

∞
∑

k=1

αk‖rk‖ < ∞. (13)

Since (3) is satisfied, we deduce from Theorem 1

lim
k→∞

f(xk) = f∗,

∞
∑

k=1

αk‖∇f(xk)‖
2 < ∞.

If we also assume a lower estimate on the step sizes, then we obtain the
convergence of the gradients to zero.
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Corollary 1 In addition to the assumptions of Theorem 2 let

∞
∑

k=1

αk = ∞. (14)

Then

lim
k→∞

‖∇f(xk)‖ = 0.

Proof. First, we show

lim inf
k→∞

‖∇f(xk)‖ = 0. (15)

If (15) does not hold, then there exists ε > 0 such that ‖∇f(xk)‖ ≥ ε for all
k ≥ k0 and hence

∞
∑

k=1

αk‖∇f(xk)‖
2 ≥

∞
∑

k=k0

αkε
2 = ∞,

a contradiction to (8).
In order to show ∇f(xk) → 0 we assume, on the contrary, that there exists

a subsequence xkj
such that

‖∇f(xkj
)‖ ≥ ε > 0.

From (15) it follows that for each j there exists a smallest lj > kj with

‖∇f(xlj )‖ ≤
ε

2
,

i.e.

‖∇f(xk)‖ >
ε

2
for k = kj , . . . , lj − 1. (16)

Using the Lipschitz continuity of ∇f(·) and (12) we get

ε

2
= ε−

ε

2
≤ ‖∇f(xkj

)‖ − ‖∇f(xlj )‖ ≤ ‖∇f(xkj
)−∇f(xlj )‖

≤ L‖xkj
− xlj‖ = L‖

lj−1
∑

k=kj

αkdk‖ ≤ L

lj−1
∑

k=kj

αk‖dk‖ ≤ L(g∗ + r∗)

lj−1
∑

k=kj

αk

and hence

lj−1
∑

k=kj

αk ≥
ε

2L(g∗ + r∗)
> 0. (17)
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For the function values we obtain using (10), (11) and (12)

f(xlj )− f(xkj
) ≤

lj−1
∑

k=kj

(f(xk+1)− f(xk))

≤

lj−1
∑

k=kj

(αk〈∇f(xk), dk〉+
L

2
α2
k‖dk‖

2)

≤

lj−1
∑

k=kj

(

− αk‖∇f(xk)‖
2 + αkλk +

L

2
(g∗ + r∗)

2α2
k

)

.

We use (17) to estimate

f(xlj )− f(xkj
) ≤ − min

kj≤k≤lj−1
‖∇f(xk)‖

2 ε

2L(g∗ + r∗)

+

∞
∑

k=kj

αkλk +
L

2
(g∗ + r∗)

2
∞
∑

k=kj

α2
k.

Since the function values are converging, see (8), and the series (13) and (6) are
convergent, we obtain for j −→ ∞

0 ≤ − lim
j→∞

min
kj≤k≤lj−1

‖∇f(xk)‖
2 ε

2L(g∗ + r∗)

and therefore

lim
j→∞

min
kj≤k≤lj−1

‖∇f(xk)‖
2 = 0,

a contradiction to (16).

4. Nonmonotone Armijo’s rule

One of the most popular step size rules is Armijo’s step size rule or the back-
tracking rule. Here, we give a version which allows also for an increase in the
function value from one iteration to the next.

Nonmonotone Armijo step size rule

Let β,̺ ∈ (0, 1) be fixed and xk ∈ X, dk ∈ X with

〈∇f(xk), dk〉 < 0 (18)

be given. Furthermore, let νk be a sequence of non-negative numbers and
αmax > 0.
If

f(xk + αmaxdk)− f(xk) ≤ ̺αmax〈∇f(xk), dk〉+ νk (19)
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set

αk = αmax,

otherwise find the smallest lk ∈ IN with

f(xk + αmaxβ
lkdk)− f(xk) ≤ ̺αmaxβ

lk〈∇f(xk), dk〉+ νk (20)

and set

αk = αmaxβ
kl .

If the perturbation quantity νk is set to zero, the usual Armijo step size
rule is as listed above. Note that in the case νk > 0, although dk is a descent
direction, the value of f(xk + αkdk) does not need to be smaller than f(xk),
leading to a nonmonotone line search.

Lemma 2 The nonmonotone Armijo’s rule is well defined, provided ∇f is Lip-
schitz-continuous.

Proof. If (20) does not hold, then there exists a subsequence lkj
→ ∞ such that

f(xk + αmaxβ
lkj dk)− f(xk) > ̺αmaxβ

lkj 〈∇f(xk), dk〉+ νk

≥ ̺αmaxβ
lkj 〈∇f(xk), dk〉.

If L is the Lipschitz constant, Taylor’s expansion yields

〈∇f(xk), dk〉αmaxβ
lkj +

L

2
(αmaxβ

lkj ‖dk‖)
2 ≥ f(xk + αmaxβ

lkj dk)− f(xk)

> ̺αmaxβ
lkj 〈∇f(xk), dk〉.

A division by βlkj and taking the limit for j → ∞ lead to the estimate

αmax〈∇f(xk), dk〉 ≥ ̺αmax〈∇f(xk), dk〉.

From this and ̺ ∈ (0, 1) we conclude that 〈∇f(xk), dk〉 ≥ 0, contradicting the
assumption (18).

In the following theorem we prove that we obtain the same convergence estimates
as for the original Armijo rule, if we assume that the perturbation parameters
νk form a summable series.

Theorem 3 Let f be bounded from below by fm and let ∇f be Lipschitz conti-
nuous. Furthermore we assume

∞
∑

k=1

νk < ∞
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and let xk+1 = xk + αkdk satisfy the nonmonotone Armijo rule. Then there
exists f∗ such that

lim
k→∞

f(xk) = f∗

and

min

{

−〈∇f(xk), dk〉,

(

〈∇f(xk), dk〉

‖dk‖

)2
}

−→ 0. (21)

Proof. Since ∇f(·) is Lipschitz continuous, the nonmonotone Armijo rule is well
defined according to Lemma 2 and we have the following inequality for all k

f(xk+1)− f(xk) ≤ ̺αk〈∇f(xk), dk〉+ νk.

If we set λk = 0 and σ(xk) = −〈∇f(xk), dk〉 we see that the assumptions (1)
and (3) in Theorem 1 are satisfied. The conclusions of Theorem 1 are the
convergence of the function values f(xk) to some limit f∗ and

∞
∑

k=1

αk(−〈∇f(xk), dk〉) < ∞. (22)

If the case (19) is satisfied, we have

αk(−〈∇f(xk), dk〉) = −αmax〈∇f(xk), dk〉. (23)

Otherwise, due to the choice of lk we have for αk

β
= αmaxβ

lk−1 the reverse of

(20)

f(xk +
αk

β
dk)− f(xk) > ̺

αk

β
〈∇f(xk), dk〉+ νk ≥ ̺

αk

β
〈∇f(xk), dk〉.

As usual, Taylor’s expansion yields

αk

β
〈∇f(xk), dk〉 +

L

2
(
αk

β
‖dk‖)

2 > ̺
αk

β
〈∇f(xk), dk〉

and finally

αk (−〈∇f(xk), dk〉) ≥ (1− ̺)
2β

L

(−〈∇f(xk), dk〉)
2

‖dk‖2
.

Together with (23) we obtain

αk(−〈∇f(xk), dk〉)≥min{−αmax〈∇f(xk), dk〉, (1−̺)
2β

L

(

〈∇f(xk), dk〉

‖dk‖

)2

}≥ 0

where the left side tends to zero due to (22) and (21) is true.
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The following three corollaries illustrate some of the choices for descent direc-
tions.

Corollary 2 Let dk = −∇f(xk). Then

∇f(xk) −→ 0.

Corollary 3 Let dk be such that ‖dk‖ = 1 and for some c > 0

〈∇f(xk), dk〉 ≤ − c ‖∇f(xk)‖ (24)

be given. Then we have

∇f(xk) −→ 0.

Proof. Note that

−〈∇f(xk), dk〉 ≥ c‖∇f(xk)‖

and

(

〈∇f(xk), dk〉

‖dk‖

)2

≥ c2‖∇f(xk)‖
2

hold. From (21) follows the convergence of ∇f(xk) to zero.

Corollary 4 Let dk be such that for some a1, a2 > 0

〈∇f(xk), dk〉 ≤ −a1‖∇f(xk)‖
2, ‖dk‖ ≤ a2‖∇f(xk)‖.

Then we have

∇f(xk) −→ 0.

Proof. Note that

−〈∇f(xk), dk〉 ≥ a1‖∇f(xk)‖
2

and

−
〈∇f(xk), dk〉

‖dk‖
≥

a1
a2

‖∇f(xk)‖,

which shows the convergence of ∇f(xk) to zero using (21).

Conditions on the relation between the gradient ∇f(xk) and the descent direc-
tion dk in Corollaries 3 and 4 as well as in the subsequent Theorems 4 and 5 are
closely related to conditions on the boundedness away from zero of the angle
cos(−∇f(xk), dk).
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5. A gradient norm based step size rule

In some applications, function evaluations are quite expensive. In such a case,
an iterative procedure to determine a proper step size like Armijo’s rule can be
quite time consuming. A possibility to avoid such an iterative procedure is the
choice of a step size as a fraction of the norm of the gradient. Convergence for
such a rule can be proven, if the Lipschitz constant of the gradient of f is known.
We show that this case is also covered by the general approach we outlined in
the second section of this paper.

Theorem 4 Let f(x) ≥ fm and let ∇f be Lipschitz continuous with Lipschitz
constant L. Choose 0 < α− < α+ < 2

L
c with some constant c > 0. Let dk be

descent directions satisfying

‖dk‖ = 1 and 〈∇f(xk), dk〉 ≤ −c‖∇f(xk)‖.

Set

xk+1 = xk + αkdk

where

αk = αk‖∇f(xk)‖, αk ∈ [α−, α+]. (25)

Then

lim
k→∞

f(xk) = f∗ and lim
k→∞

‖∇f(xk)‖ = 0.

Proof. Taylor’s expansion and the assumptions on dk yield

f(xk+1)− f(xk) ≤ αk〈∇f(xk), dk〉+
L

2
α2
k ‖dk‖

2

= αk

(

〈∇f(xk), dk〉+
L

2
αk ‖∇f(xk)‖

)

≤ αk〈∇f(xk), dk〉
(

1−
L

2
αk

1

c

)

≤ αk〈∇f(xk), dk〉
(

1−
L

2
α+

1

c

)

.

Hence (2) holds with νk = 0 and ̺ = 1 − L
2cα+ ∈ (0, 1]. We choose λk = 0

and σ(xk) = ‖∇f(xk)‖ c, such that (1) holds. Then Theorem 1 yields the
convergence of the function values f(xk) to some value f∗ and by (4)

∞ >

∞
∑

k=1

αkσ(xk) =

∞
∑

k=1

αk‖∇f(xk)‖ c

= c

∞
∑

k=1

αk ‖∇f(xk)‖
2 ≥ cα−

∞
∑

k=1

‖∇f(xk)‖
2

and we have ‖∇f(xk)‖ −→ 0.
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The main disadvantage of Theorem 4 is the fact that an explicit knowledge
of L is required in order to estimate α+.

6. Nonmonotone step size rule by Zhang and Hager

In a recent paper, Zhang and Hager (2004) derived some results for nonmonotone
line searches in connection with a modified Armijo’s rule or Wolfe’s rule.

In the case of Armijo’s rule the setup is identical with the one in the Armijo’s
algorithm outlined in the previous section. The difference is related to the
parameter νk. In Zhang and Hager (2004) it is assumed that the iterates xk

and directions dk satisfy the descent condition 〈∇f(xk), dk〉 < 0. If αmax > 0
satisfies for some ̺ > 0

f(xk + αmaxdk) ≤ ck + ̺ αmax 〈∇f(xk), dk〉,

then set αk = αmax, otherwise find the smallest lk ∈ IN such that for αk =
αmaxβ

lk we have

f(xk+1) = f(xk + αkdk) ≤ ck + ̺ αk 〈∇f(xk), dk〉. (26)

The sequence ck is updated according to the rule

ck+1 = (ηkqkck + f(xk+1))/qk+1, qk+1 = ηkqk + 1, (27)

where ηk ∈ [ηmin, ηmax] with numbers 0 ≤ ηmin ≤ ηmax. As initial values we
choose c0 = f(x0) and q0 = 1.

Note that, if ηk = 0, the classical Armijo-rule occurs as a special case. On
the other hand, if ηk > 0, then ck+1 is a convex combination of ck and f(xk+1).
Since ck is also constructed as a convex combination, ck+1 can be regarded as
a convex combination of all previous function values f(xk+1):

ck+1 = γ0f(x0) + γ1f(x1) + ...+ γk+1f(xk+1).

Note that in (26), in comparison with (2), the value of f(xk) is replaced by
ck, thus allowing for a nonmonotone behavior of the function values.

It is obvious that by setting νk = ck − f(xk) we are in the framework of
Section 4. Then the following theorem can be proved based on the results from
the previous section. For Armijo’s rule it coincides with the result in Zhang and
Hager (2004, Theorem 2.2).

Theorem 5 Let the assumption on the function f of Theorem 3 hold. If, in
addition, for the sequence xk+1 = xk + αkdk produced by Zhang and Hager’s
Algorithm there exist constants a1, a2 > 0 such that

〈∇f(xk), dk〉 ≤ −a1‖∇f(xk)‖
2, ‖dk‖ ≤ a2‖∇f(xk)‖ (28)

and if ηmax < 1, then

lim
k→∞

∇f(xk) = 0.
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Proof. We can easily apply Theorem 3 and Corollary 4, if we can prove for the
quantities νk = ck − f(xk) that

∑∞

k=1 νk < ∞ holds.
Using (28) we obtain from (26) that

f(xk+1) ≤ ck (29)

holds.
We obtain from (27) that

ck+1 =
ηkqkck + f(xk+1)

qk+1
=

(qk+1 − 1)ck + f(xk+1)

qk+1
= ck+

f(xk+1)− ck
qk+1

. (30)

With (29) we have

0 ≤
ck − f(xk+1)

qk+1
= ck − ck+1.

Using a telescope series argument and (29) again we obtain

0 ≤
n
∑

k=0

ck − f(xk+1)

qk+1
= c0 − cn+1 ≤ c0 − f(xn+2) ≤ c0 − fm. (31)

On the other hand equation (30) implies

νk+1 = ck+1−f(xk+1) = (1−
1

qk+1
)(ck−f(xk+1)) = (qk+1−1)

ck − f(xk+1)

qk+1
≥ 0,

because qk > 1 by definition and ck ≥ f(xk+1) as shown in (29). The sequence
of qk is bounded, because ηk ≤ ηmax < 1

qk+1 = ηkqk + 1 ≤ ηmaxqk + 1 ≤ ... ≤ ηk+1
max + ηkmax + ...+ 1 ≤

1

1− ηmax

.

From (31)

0 ≤

∞
∑

k=1

νk =

∞
∑

k=1

(qk − 1)
ck−1 − f(xk)

qk
≤

ηmax

1− ηmax

∞
∑

k=1

ck−1 − f(xk)

qk

≤
ηmax

1− ηmax

(c0 − fm) < ∞.

7. Discretization of optimization problems

The here developed theory can also be applied to finite-dimensional discretiza-
tions of infinite-dimensional optimization problems. A whole class of examples
are PDE-constrained optimization problems as outlined in Tröltzsch (2010). In
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order to indicate some potential applications, we take a quick look at an ideal-
ized situation:

Consider a problem in Hilbert space X with f : X → IR

min
x∈X

f(x).

Let Xn be a sequence of nested finite-dimensional subspaces of X

X1 ⊂ ... ⊂ Xn ⊂ Xn+1 ⊂ ... ⊂ X. (32)

For functions fn : Xn → IR we can consider a sequence of finite-dimensional
optimization problems

min
x∈Xn

fn(x).

Suppose that we refine the meshes as the iteration progresses, i.e. we have a
sequence n(k) → ∞ for k → ∞. If we choose a fixed predetermined step size
rule, it would yield the same sequence of numbers αk for all levels of discretiza-
tion. Then the implementable finite-dimensional version of a steepest descent
method is given by

xn
k+1 = xn

k − αk∇fn(xn
k ).

For each fixed discretization level n, the standard theory would yield some
convergence statement of the type ∇fn(xn

k ) → 0 for k → ∞ and n fixed. It
would be more meaningful to have a statement, where the original gradients

tend to zero, like ∇f(x
n(k)
k ) → 0 for k → ∞.

We see below how this can be achieved as a simple application of the general
theory developed above.

Theorem 6 Let f : X → IR, fn : Xn → IR be a family of functions defined
on a sequence of nested subspaces Xn of X as in (32). Let n(k) be a sequence

with n(k) → ∞ for k → ∞. Define a sequence x
n(k)
k ∈ Xn(k) through a steepest

descent method where the discretization is refined at each step

x
n(k+1)
k+1 = x

n(k)
k − αk∇fn(k)(x

n(k)
k ). (33)

Let the family of functions satisfy the estimate

‖∇fn(k)(x)−∇f(x)‖ ≤ τk for all x ∈ S, (34)

where S ⊂ X contains all iterates. If the sequences αk, τk are chosen such that

∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞,

∞
∑

k=1

αkτk < ∞, (35)

then

∇f(x
n(k)
k ) → 0 k → ∞. (36)
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Proof. Due to the nested subspaces, we can consider the sequence x
n(k)
k as a

sequence in X . Then from (33)

x
n(k+1)
k+1 = x

n(k)
k + αkdk, dk = −∇fn(k)(x

n(k)
k ).

This is the setting of Theorem 2, where by (34)

‖rk‖ = ‖dk +∇f(x
n(k)
k )‖ = ‖∇fn(k)(x

n(k)
k )−∇f(x

n(k)
k )‖ ≤ τk.

Considering assumption (35) we see that in Theorem 2 the assumptions (6) and
(7) are satisfied. Hence the conclusions are true and since the assumption (14)
in Corollary 1 also holds, we obtain its conclusion, which is exactly (36).

Usually, the discretization is parameterized by a mesh size parameter h and
for the gradient errors one might have τk = O(hp

k) for some p > 0. A typical
choice for the step sizes would be αk = 1/k such that (35) is satisfied if

∞
∑

k=1

αkh
p
k < ∞

holds.
A typical application of such a theorem is shown in the following situation.

If we can extract a convergent subsequence x
n(kj)
kj

→ x∗, then the statement

(36) yields immediately ∇f(x∗) = 0, the stationarity of x∗ for the original
infinite-dimensional problem.

8. Conclusions

We consider a general setup for nonmonotone step size rules which allows to
show global convergence in the sense that the gradients of the objective functions
evaluated at the iterates converge to zero. We show how this can be applied
to various instances of nonmonotone step size rules. In particular, this yields
a new proof of an Armijo-type step size rule developed by Hager and Zhang.
Furthermore, the potential application in discretization schemes of optimization
with PDEs is indicated.
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