PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general framework for calculating shape derivatives for domain optimization problems with partial differential equations as constraints is presented. The first order approximation of the cost with respect to the geometry perturbation is arranged in an efficient manner that allows the computation of the shape derivative of the cost without the necessity to involve the shape derivative of the state variable. In doing so, the state variable is only required to be Lipschitz continuous with respect to geometry perturbations. Application to shape optimization with the Navier-Stokes equations as PDE constraint is given.
Rocznik
Strony
989--1017
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
  • Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, A-4040 Linz, Austria, henry.kasumba@oeaw.at
Bibliografia
  • Abergel, F. and Temam, R. (1990) On some control problems in fluid mechanics. Theoretical and Computational Fluid Dynamics, 1(6), 303-325.
  • Bello, J.A., Cara, E.F., Lemoine, J. and Simon, J. (1997) The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM Journal on Control and Optimization, 35(2), 626-640.
  • Delfour, M.C. and Zolesio, J.P. (1988) Shape sensitivity analysis via min max differentiability. SIAM Journal on Control and Optimization, 26(4), 834-862.
  • Delfour, M.C. and Zolésio, J.P. (2001) Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
  • Gao, Z. and Ma, Y. (2008) Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow. Applied Numerical Mathematics, 58(11), 1720-1741.
  • Gao, Z.M., Ma,Y.C. and Zhuang,H.W. (2008) Shape optimization for Navier-Stokes flow. Inverse Problems in Science and Engineering, 16(5), 583-616.
  • Haslinger, J., Ito, K., Kozubek, T., Kunisch, K. and Peichl, G. (2009) On the shape derivative for problems of Bernoulli type. Interfaces and Free Boundaries, 11(2), 317-330.
  • Hintermüller,M., Kunisch,K., Spasov,Y. and Volkwein, S. (2004) Dynamical systems based optimal control of incompressible fluids. Int. J. Numer. Methods in Fluids, 4, 345-359.
  • Ito, K., Kunisch, K. and Peichl, G. (2008) Variational approach to shape derivatives. ESAIM: Control, Optimisation and Calculus of Variations, 14, 517-539.
  • Monk, P. (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press.
  • Simon, J.(1980) Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim., 2(7-8), 649-687 (1981).
  • Sokolowski, J. and Zolésio, J.P. (1992) Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag.
  • Temam, R. (1977) Navier-Stokes Equations: Theory and Numerical Analysis (Studies in Mathematics and its Applications 2). North-Holland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.