PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the Moore-Gibson-Thompson equation which arises, e.g., as a linearization of a model for wave propagation in viscous thermally relaxing fluids. This third order in time equation displays, even in the linear version, a variety of dynamical behaviors for their solutions that depend on the physical parameters in the equation. These range from non-existence and instability to exponential stability (in time). It will be shown that by neglecting diffusivity of the sound coefficient there arises a lack of existence of a semigroup associated with the linear dynamics. More specifically, the corresponding linear dynamics consists of three diffusions: two backward and one forward. When diffusivity of the sound is positive, the linear dynamics is described by a strongly continuous semigroup which is exponentially stable when the ratio of sound speed×relaxation parameter/ sound diffusivity is sufficiently small, and unstable in the complementary regime. The theoretical estimates proved in the paper are confirmed by numerical validation.
Rocznik
Strony
971--988
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • Coulouvrat, F. (1992) On the equations of nonlinear acoustics. Journal de Acoustique. 5, 321-359.
  • Crighton, D.G. (1979) Model equations of nonlinear acoustics. Ann. Rev. Fluid Mech. 11, 11-33.
  • Datko, R. (1970) Extending a theorem of A.M. Liapunov to Hilbert spaces. J. Math. Anal. Appl. 32, 610-616.
  • Fattorini, H. (1983) The Cauchy Problem. Encyclopedia of Mathematics and its Applications. Addison Wesley.
  • Fernandez, C., Lizama, C., Poblete, V. (2010) Maximal regularity for flexible structural systems in Lebesgue spaces. Math. Problems in Eng., Art. ID 19656, 1-15.
  • Fernandez, C., Lizama, C., Poblete, V. (2011) Regularity of solutions to a third order differential equation in Hilbert space. Appl. Math. Comp. 217(21), 8522-8533.
  • Hamilton,M.F., Blackstock,D.T. (1997) Nonlinear Acoustics. Academic Press, New York.
  • Jordan, P.M. (2008) Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons. The 9th International Conf. on Theoretical and Computational Acoustics (ICTCA 2009). Dresden, Germany, 9 September 2009. (see also J. Acoust. Soc. Am., 124 (4), 2491-2491).
  • Kaltenbacher, B. (and) Lasiecka, I. (2009) Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems Series S, 2, 503-525.
  • Kaltenbacher, B. and Lasiecka, I. (2011) An analysis of nonhomogeneous Kuznetsov’s equation: Local and global well-posedness; exponential decay. Mathematische Nachrichten, 285(2-3), 295-321; DOI 10.1002/mana.201000007.
  • Kaltenbacher, B. and Lasiecka, I. (2012) Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann Bondary conditions. AIMS Proceedings (to appear).
  • Kaltenbacher, B., Lasiecka, I., Veljović, S. (2011) Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data. In: J. Escher et al., eds., Parabolic Problems: Herbert Amann Festschrift. Birkhaeuser, Basel (to appear).
  • Kuznetsov,V.P. (1971) Equations of nonlinear acoustics. Sov. Phys. Acoust., 16, 467-470.
  • Makarov, S., Ochmann, M. (1997) Nonlinear and Thermoviscous Phenomena in Acoustics Part. II. Acta Acustica united with Acustica. 83, 197-222.
  • Moore, F.K. and Gibson, W.E. (1960) Propagation of weak disturbances in a gas subject to relaxation effects. Journal of Aerospace Science and Technologies. 27, 117-127.
  • Pazy, A. (1983) Semigroups of Operators and Applications to Partial Differential Equations. Springer, New York.
  • Thompson, P.A. (1972) Compressible-fluid Dynamics. McGraw-Hill, New York.
  • Tjøtta, S. (2001) Higher order model equations in nonlinear acoustics. Acta Acustica united with Acustica. 87, 316-321.
  • Rozanova-Pierrat, A. (2008) Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Math. Mod. Meth. Appl. Sci. (M3AS). 18, 781-812.
  • Westervelt, P.J. (1963) Parametric acoustic array. The Journal of the Acoustic Society of America, 35, 535-537.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATC-0009-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.