Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper provides a model of the human respiratory system by taking into account the fractal structure of the airways and the viscoelastic properties of the tissue. The self-similarity of airway distribution is admitted up to the 24th generation. Due to periodic breathing which results in sinusoidal excitation of the respiratory system, an electrical equivalent model is developed. The periodic current in this electrical network, that preserves the geometry of the human respiratory tree, is equivalent to the oscillatory air-flow. The model is expressed by Navier-Stokes equations under cylindrical symmetry, linked with an equation responsible for the motion of viscoelastic tissue of airway walls. By use of both electro-mechanical analogies, the total impedance of the respiratory system is determined and compared to the measured data in the clinical range of 4-48 Hz, as well as in the low-frequency range of 0.1-5 Hz. We propose also a lumped model of fractional orders, which is able to capture frequency-dependent variations in both clinical as well as in the low-frequency ranges. The models proposed in this paper can be further used to determine the effects of disease on the lung morphology.
Czasopismo
Rocznik
Tom
Strony
21--48
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
autor
autor
- Department of Electrical Energy, Systems and Automation Ghent University Technologiepark 913, Gent 9052, Belgium, ClaraMihaela.Ionescu@UGent.be
Bibliografia
- 1. M. ABRAMOWITZ, LA STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, ISBN 978-0-486-61272-0, New York 1972.
- 2. A.P. AVOLIO, A multibranched model of the human arterial system, Med. and Biol. Eng. arid Compl., 18, 709-718, 1980.
- 3. B. BABIK, T. ASZTALOS, F. PETAK, Z. DEAC, Z. HANTOS, Changes in respiratory mechanics during cardiac surgery, Anesth. Analg., 96, 1280-1287, 2003.
- 4. H. BACHOFEN, Lung tissue resistance and pulmonary hysteresis, J. Appl. Physiol., 24, 296-301, 1968.
- 5. P.J. BARNES, Chronic Obstructive Pulmonary Disease, NEJM Medical Progress, 343, 2, 269-280, 2000.
- 6. G. MAKSYM, J. BATES, A distributed, nonlinear model of lung tissue elasticity, J. Appl. Physiol., 82, 1, 32-41, 1997.
- 7. A.R. BERGEN, V. VITTAL, Power system analysis, 2nd ed., Pearson Education, United States of America, 1999.
- 8. D. CRAIEM, R. ARMENTANO, A fractional derivative model to describe arterial viscoelasticity, Biorheology, 44, 251-263, 2007.
- 9. H. FRANKEN, J. CLEMENT, M. CAUBERGHS, K. VAN DE WOESTIJNE, Oscillating flow of a viscous compressible fluid through a rigid tube: a theoretical model, IEEE Trans. Biomed. Eng., 28, 5, 416-420, 1981.
- 10. M. FELLAH, Z.E.A. FELLAH, C. DEPOLLIER, Transient wave propagation in inhomogeneous porous 'materials: Application of fractional derivatives, Signal Processing, 86, 2658-2667, 2006.
- 11. A. ELIZUR, C. CANNON, T. FERKOL, Airway inflammation in cystic fibrosis, Chest, 133, 2, 489-495, 2008.
- 12. S. GHEORGHIU, S. KJELSTRUP, P. PFEIFER, M.O. COPPENS, 7s the lung an optimal gas exchanger?, [in:] Fractals in Biology and Medicine, vol IV, G. LOSA, D. MERLINI, T. NONNENMACHER, E.R. WEIBEL [Eds.], Birkhauser, Berlin, 31-42, 2005.
- 13. P. HARPER, S. KARMAN, H. PASTERKAMP, G. WODICKA, An Acoustic Model of the Respiratory Tract, IEEE Transactions of Biomedical Engineering, 48, 5, 543-549, 2001.
- 14. Z. HANTOS, B. DAROCZY, B. SUKI, G. GALGOCZY, T. CSENDES, Forced oscillatory impedance of the respiratory system at low frequencies, J. Appl Physiol., 60, 1, 123-132, 1986.
- 15. C. IONESCU, R. DE KEYSER, Parametric models for characterizing respiratory input impedance, Taylor and Francis J. Med. Eng. and Tech., 32, 4, 315-324, 2008.
- 16. C. IONESCU, R. DE KEYSER, Relations between Fractional Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary Disease, IEEE Trans. Biomed. Eng., 56, 4, 978-987, 2009,
- 17. C. IONESCU, P. SEGERS, R. DE KEYSER, Mechanical properties of the respiratory system derived from morphologic insight, IEEE Trans. Biomed. Eng., 56, 4, 949-959, 2009; DOI: 10.1109/TBME. 2008.2007807.
- 18. C. IONESCU, K. DESAGER, R. DE KEYSER, Estimating respiratory mechanics with constant-phase models in healthy lungs from forced oscillations 'measurements, Studia Universitatis "Vasile Goldis" Life Science Series, 19, 1, 123-132, 2009.
- 19. M. KING, U.K. CHANG, M.E. WEBER, Resistance of mucus-lined tubes to steady and oscillatory airflow, ,1. Appl. Phys., 52, 5, 1172-4176, 1982.
- 20. J.W. LEE, M.Y. KANG, H.J. YANG, E. LEE, Fluid-dynamic optimality in the generation-averaged length-to-diameter ratio of the human bronchial tree, Med. Bio. Eng. Comput., 45, 1071-1078, 2007.
- 21. B. MANDELBROT, The fractal geometry of nature, Freeman and Co, NY 1983.
- 22. J. MEAD, Mechanical Properties of Lungs, Physiological Reviews, 41, 2, 281-330, 1961.
- 23. B, MAUROY, 3D hydrodynamics in the upper human bronchial tree: interplay between geometry and flow distribution, [in:] Fractals in Biology and Medicine, Vol. IV, G. LOSA, D. MEHLINI, T. NONNENMACHER, E.R. WEIBEL [Eds.], Birkhaűser, Berlin, 43-53, 2005.
- 24. K. S. MILLER AND B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York 1993.
- 25. K.B. OLDHAM, J. SPANIER, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, New York, London 1974.
- 26. D. OLSON, G. DART, G. FILLEY, Pressure drop and fluid flow regime of air inspired into the human lung, J. Appl. Physiol., 28, 482-494, 1970.
- 27. M.S. OLUFSEN, Structured tree outflow condition for blood flow in larger systemic arteries, Heart, Circ. Physiol., 45, H257-II268, 1999.
- 28. E. OOSTVEEN, D. MACLEOD, H. LORINO, R. FARRE, Z. HANTOS, K. DESAGER, F. MAKCIIAL, The forced oscillation technique in clinical practice: methodology, recommendations and future developments, European Respiratory Journal, 22, 1026-1041, 2003.
- 29. T. PEDLEY, R. SGHROTER, M. SUDLOW, Flow and pressure drop in systems of repeatedly bmnchmg tubes, J. Fluid Mech., 46, 2, 365-383, 1971.
- 30. I. PODLUBNY, Fractional Differential Equations, Academic Press, San Diego 1999.
- 31. V. SAURET, K. GOATMAN, J. FLEMING, A. BAILEY, Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree, Phys. Med. Biol., 44, 1625-1638, 1999.
- 32. V. SAURET, P. HALSON, I. BROWN, J. FLEMING, A. BAILEY, Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images, Journal of Anatomy, 200, 123-134, 2002.
- 33. N. SEBAA, Z.F.A. FELLAHB,, W. LAURIKSA, G. DEPOLLIERG, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing, 86, 2668-2677, 2006.
- 34. P. SEGERS, Biomechanical modelling of the arterial system for non-invasive determination of arterial compliance, PhD thesis [in Dutch], 1997, Ghent University, Chapters 1-3.
- 35. B. SUKI, A.L. BARABASI, K. LUTCHEN, Lung tissue viscoelasticity: a mathematical framework and its molecular basis, J. Appl. Physiol, 76, 6, 2749-2759, 1994.
- 36. B. SUKI, H. YUAN, Q. ZHANG, K. LUTCHEN, Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening, J. Appl. Physiol, 82, 1349-1359, 1997.
- 37. B. SUKI, Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces, J. Appl. PhysioL, 98, 1892-1899, 2005.
- 38. A.J. TURSKI, B. ATAMANIUK, E. TURSKA, Fractional derivative analysis of Helmholtz and paraxial-wave equations, J. Tech. Phys., 44, 2, 193-206, 2003.
- 39. E.R. WEIBEL, Morphometry of the human lung, Springer, Berlin 1963.
- 40. E.R. WEIBEL, Mandelbrot's fractals and the geometry of life: a tribute to Benoit Mandelbrot on his 80th birthday, [in:] Fractals in Biology and Medicine, vol. IV, G. LOSA, D. MERLINI, T. NONNENMACHER, E.R. WEIBEL [Eds.], Birkhaűser, Berlin, 3-16, 2005.
- 41. J. WELTY, C. WICKS, R. WILSON, Fundamentals of momentum, heat and mass transfer, John Wiley arid Sons, USA, 1969.
- 42. B.J. WEST, V. BARGHAVA, A.L. GOLDBERGER, Beyond the principle of similitude: renormalization of the bronchial tree, J. Appl. Physiol, 60, 1089-1097, 1986.
- 43. J.R. WOMERSLEY, An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, Wright Air Development Center, Technical Report WADC-TR56-614, 1957.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATB-0001-0046