PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved five-parameter fractional derivative model for elastomers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic behaviour of elastomers is assumed to follow a constitutive differential equation of non-integral (fractional) order. In order to describe the peculiar frequency response of the loss factor, the constitutive equation has been refined by introducing the fifth parameter to the classical fourth-order equation. The asymmetry of the loss factor in the frequency domain comes from the different time-derivative orders of the stress and strain. Either smooth asymmetry or stabilization by a plateau at high frequency can be modelled by suitable difference between the two orders of the time derivatives. The physical validity of the model is discussed and a parametrical analysis is conducted on diagrams relating the height and the width of the loss factor.
Rocznik
Strony
459--474
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Laboratoire de Mecanique Biomecanique, Polymere et Structures Ecole Nationale d'Ingenieurs de Metz Ile du Saulcy 57045 Metz Cedex 01, France, lipinski@enim.fr
Bibliografia
  • 1. R.L. BAGLEY, P.J. TORVIK, Fractional calculus - a different approach to the analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics Journal, 2, 741-748, 1983.
  • 2. R.L. BAGLEY, P.J. TORVIK, On the fractional calculus model of viscoelastic behaviour, Journal of Rheology, 30, 133-135, 1986.
  • 3. C. FRIEDRICH, Relaxation and retardation functions of the Maxiuell model with fractional derivatives, Rheologica Acta, 30, 2, 151-158, 1991.
  • 4. T.F. NONNENMACHER, W.G. GLOCKLE, A fractional model for mechanical stress relaxation, Phil. Mag. Lett., 64, 2, 89-93, 1991.
  • 5. N. HEYMANS, J.C. BAUWENS, Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33, 3, 210-219, 1994.
  • 6. H. SCHIESSEL, R. METZLER, A. BLUMEN, T.F. NONNENMACHER, Generalized viscoelastic models: their fractional equations with solutions, J. Phys. A, 28, 23, 6567-6584, 1995.
  • 7. Y.A ROSSIKHIN, M.V. SHITIKOVA, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50, 15-67, 1997.
  • 8. R. METZLER, T.F. NONNENMACHER, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, Int. J. Plast., 19, 941-959, 2003.
  • 9. K.S. COLE, R.H. COLE, Dispersion and absorption in dielectrics, J. Chem. Phys., 9, 341-351, 1941.
  • 10. S. HAVRILIAK, S. NEGAMI, A complex plane analysis of a-dispersions in some polymer systems, [in:] Transitions and Relaxations in Polymers, J. Polym. Sci. Part C, 14, R.F. BOYER [Ed.], Interscience, New York, 99-117, 1966.
  • 11. D.W.DAVIDSON, R.H. COLE, Dielectric relaxation in glycerine, J. Chem. Phys., 18, 1417, 1950.
  • 12. C. FRIEDRICH, H. BRAUN, Generalized Cole-Cole behaviour and its reological relevance, Rheological Acta, 31, 309-322, 1992.
  • 13. T. PRITZ, Five-parameter fractional derivative model for polymeric damping materials, J. of Sound and Vibration, 265, 937-952, 2003.
  • 14. L. BOLTZMANN, Zur Theorie des elastischen Nachwirkung, Annalen der Physik und Chemie, 27, 624-654, 1876.
  • 15. M. ENELUND, P. OLSSON, Damping described by fading m,emory analysis and application to fractional derivative models, Int. J. of Solids and Struct., 36, 939-970, 1999.
  • 16. M. ENELUND, G.A. LESIEUTRE, Time domain modeling of damping using anelastic displacement fields and fractional calculus, Int. J. of Solids and Struct., 36, 4447-4472, 1999.
  • 17. I.M. GEL'FAND, G.E. SHILOV, Generalised Functions, Vol. 1: Properties and Operations, Academic Press, New York-London 1964.
  • 18. S.G. SAMKO, A.A. KILBAS, O.I. MARICHEV, Fractional integrals and derivatives, theory and applications, Gordon and Breach Science Publishers, Switzerland and Philadelphia, Pa., U.S.A., 1993.
  • 19. R.O. DAVIES, J. LAMB, Ultrasonic analysis of molecular relaxation process in liquids, Q. Rev., 11, 134-161, 1957.
  • 20. B. HARTMANN, G.F. LEE, J.D. LEE, LOSS factor height and width limits for polymer relaxations, J. Acoust. Soc. Am. 95, 1, 226-233, 1994.
  • 21. W.P. Fox, Generalized nonlinear regression, maple procedure, www. mapleapps.com.
  • 22. A.D. NASHIF, T.M. LEWIS, Proceedings of damping '91, San Diego, CA, 1, 1-26, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATB-0001-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.