Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznań and Elbląg. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne’s formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznań as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.
Słowa kluczowe
Rocznik
Tom
Strony
63--81
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
autor
autor
- Poznań University of Life Sciences, Department of Geotechnics, ul. Piątkowska 94, 60-649 Poznań, zbigniew.mlynarek@hebo-poznan.pl
Bibliografia
- 1. Benjamin J. R., Cornell C. A. (1970) Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill Book Co., New York.
- 2. Horn A. (1964) Die Scherfestigkeit von Schluff, Westdeutschr Verlag, Koln.
- 3. Kezdi A. (1969) Handbuch der Bodenmechanik, Akademiai Kiado, Budapest.
- 4. Kezdi A., Młynarek Z. (1980) Static penetration test results with soils having slight or medium cohesion, Acta Technica Academiae Scientiarum Hungaricae, 90 (3–4), 187–199.
- 5. Lunne T., Powel J. J. M, Hauge E.A., Uglow I. M., Mokkelbost K. H. (1990) Correlation of Dilatometer Readings to Lateral Stress, Proc. of Special Session on Measurement of Lateral Stress. 69th Annual Meeting of the Transportation Research Board, Washington D. C.
- 6. Lunne T., Robertson P. K., Powell J. (1997) Cone penetration testing in geotechnical practice, E&FN Spon, London.
- 7. Mayne P. W. (1995) Profiling Yield Stress in Clays by In-Situ Tests, Transportation Research Record 1479, National Academy Press, Washington, D. C., 43–50.
- 8. Mayne P. W., Coop M. R., Springman S., Huang A. B. and Zornberg J. (2009) State-of-the-Art Paper (SOA-1): GeoMaterial Behavior and Testing, Proc. of 17th Intl. Conf. on Soil Mechanics & Geotechnical Engineering, 4 (ICSMGE, Alexandria, Egypt), Millpress/IOS Press Rotterdam: 2777–2872.
- 9. Młynarek Z. (2010) Quality of laboratory and in-situ test contribution to risk management, Proc. Of 14th Danube-European Conference on Geotechnical Engineering, Bratislava, Slovakia.
- 10. Młynarek Z., TschuskcheW., Sanglerat G. (1988) Accuracy of embankment density assessment of cone penetration test and light dynamic probe, Proc. of ISOPT-1988, Orlando, Balkema, 869–874.
- 11. Młynarek Z. (1970) Application of static cone penetration test in evaluation of the consistency and strength properties of sandy clay, PhD Thesis (in Polish), University of Life Sciences, Poznan.
- 12. Młynarek Z., Wierzbicki J., Wołynski W. (2007) An approach to 3D subsoil model based on CPU results, Proc. of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid. Vol. 3. Millpress Rotterdam, 1721–1726.
- 13. Robertson P. K. (2009) Interpretation of Cone Penetration Testing – a unified approach, Canadian Geotechnical Journal, 46 (11), 1337–1355.
- 14. Sandven R., Senneset K., Janbu N. (1988) Interpretation of piezocone tests in cohesive soils, Proc. ISOPT-1, Orlando 939–953.
- 15. Schnaid F. (2009) In Situ Testing in Geomechanics, Taylor & Francis, London and New York.
- 16. Senneset K., Janbu N., Svano G. (1982) Strength and deformation parameters from cone penetration tests, Proc. ESOPT-2, Amsterdam, Balkema Publ., Rotterdam 863–870.
- 17. Tumay M. T., Karasulu H., Mlynarek Z., Wierzbicki J. (2011) Effectiveness of Piezo Cone Penetration Test classification charts for identification of subsoil stratigraphy, Proc. of 12th ECSMGE, Athens.
- 18. Viana da Fonseca A., Silva S. R, Cruz N. (2010) Geotechnical characterization by in situ and lab tests to the back-analysis of a supported excavation in Metro do Porto, Geotech Geol Eng (28), 251–264.
- 19. Wierzbicki J. (2010) Evaluation of subsoil overconsolidation by means of in situ tests in the context of its origin, Rozprawy Naukowe nr 410, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, ISSN 1896–1894, 182 pp. (in Polish).
- 20. Wiłun Z. (2000) The epitome of geotechnique (in Polish), Wyd. Komunikacji i Łacznosci, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0019-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.